Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Muscle Nerve ; 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37610034

ABSTRACT

INTRODUCTION/AIMS: Hourglass-like constrictions (HGCs) of involved nerves in neuralgic amyotrophy (NA) (Parsonage-Turner syndrome) have been increasingly recognized with magnetic resonance neurography (MRN). This study sought to determine the sensitivity of HGCs, detected by MRN, among electromyography (EMG)-confirmed NA cases. METHODS: This study retrospectively reviewed records of patients with the clinical diagnosis of NA, and with EMG confirmation, who underwent 3-Tesla MRN within 90 days of EMG at a single tertiary referral center between 2011 and 2021. "Severe NA" positive cases were defined by a clinical diagnosis and specific EMG criteria: fibrillation potentials or positive sharp waves, along with motor unit recruitment (MUR) grades of "discrete" or "none." On MRN, one or more HGCs, defined as focally decreased nerve caliber or diffusely beaded appearance, was considered "imaging-positive." Post hoc inter-rater reliability for HGCs was measured by comparing the original MRN report against subsequent blinded interpretation by a second radiologist. RESULTS: A total of 123 NA patients with 3-Tesla MRN performed within 90 days of EMG were identified. HGCs were observed in 90.2% of all NA patients. In "severe NA" cases, based on the above EMG criteria, HGC detection resulted in a sensitivity of 91.9%. Nerve-by-nerve analysis (183 nerve-muscle pairs, nerves assessed by MRN, muscles assessed by EMG) showed a sensitivity of 91.0%. The second radiologist largely agreed with the original HGC evaluation, (94.3% by subjects, 91.8% by nerves), with no significant difference between evaluations (subjects: χ2 = 2.27, P = .132, nerves: χ2 = 0.98, P = .323). DISCUSSION: MRN detection of HGCs is common in NA.

2.
Radiology ; 307(1): e221087, 2023 04.
Article in English | MEDLINE | ID: mdl-36511805

ABSTRACT

Background The efficacy of ferumoxytol, an ultrasmall superparamagnetic iron oxide particle for three-dimensional (3D) MR neurography, has yet to be evaluated. Purpose To evaluate the effects of low-dose ferumoxytol for vascular suppression and nerve visualization in 3D brachial plexus MR neurography as a pilot study. Materials and Methods Volunteers without anemia were prospectively enrolled in July 2021. Brachial plexus MR neurography was performed 30 minutes following infusion of 25% of the standard (510 mg of iron) therapeutic ferumoxytol dose with use of a 3D short-tau inversion recovery T2-weighted fast spin-echo sequence. The 3D fast spin-echo was acquired with and without the use of additional flow suppression techniques. Two musculoskeletal radiologists qualitatively evaluated examinations for the degree of vascular suppression (0-3, none to complete), nerve visualization (0-2, none to full), and motion artifact (0-4, none to severe). Nerve-to-fat, muscle, or vessel contrast ratios were calculated with use of manually drawn regions of interests. Comparisons of the proportion of scans with adequate image quality (vascular suppression, 3; nerve visualization, 1, 2; motion artifacts, 0, 1) were made with use of the McNemar test. Comparisons of quantitative contrast ratios were performed with use of Wilcoxon signed rank tests. P < .05 was deemed statistically significant. Results There were 12 volunteers (mean age, 25 years ± 3; six women) evaluated. The scans with adequate vascular suppression increased from 0% to 98% with and without ferumoxytol, respectively (P < .001). All individual nerve assessments of adequate nerve visualization increased from 4%-63% to 36%-100% without and with ferumoxytol, respectively (P < .001-.010), while motion artifacts were unchanged (from 33% to 52%, P = .212). Quantitatively, nerve-to-vessel contrast ratios increased from 0.6 without to 7.6 with ferumoxytol (P < .001). The addition of flow suppression did not change nerve-to-vessel contrast ratio quantitatively (from 7.5 to 8.4, P > .99) following ferumoxytol. Conclusion Low-dose ferumoxytol improved vascular suppression and nerve visualization in three-dimensional MR neurography of the brachial plexus compared to imaging without ferumoxytol. © RSNA, 2022.


Subject(s)
Brachial Plexus , Magnetic Resonance Imaging , Humans , Female , Adult , Magnetic Resonance Imaging/methods , Ferrosoferric Oxide , Pilot Projects , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Brachial Plexus/diagnostic imaging
3.
Invest Radiol ; 58(1): 14-27, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35926072

ABSTRACT

ABSTRACT: Magnetic resonance neurography of the brachial plexus (BP) is challenging owing to its complex anatomy and technical obstacles around this anatomic region. Magnetic resonance techniques to improve image quality center around increasing nerve-to-background contrast ratio and mitigating imaging artifacts. General considerations include unilateral imaging of the BP at 3.0 T, appropriate selection and placement of surface coils, and optimization of pulse sequences. Technical considerations to improve nerve conspicuity include fat, vascular, and respiratory artifact suppression techniques; metal artifact reduction techniques; and 3-dimensional sequences. Specific optimization of these techniques for BP magnetic resonance neurography greatly improves image quality and diagnostic confidence to help guide nonoperative and operative management.


Subject(s)
Brachial Plexus , Imaging, Three-Dimensional , Imaging, Three-Dimensional/methods , Brachial Plexus/pathology , Artifacts , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...