Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 16(3): 3613-3624, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35188753

ABSTRACT

The ability to tune the optical response of a material via electrostatic gating is crucial for optoelectronic applications, such as electro-optic modulators, saturable absorbers, optical limiters, photodetectors, and transparent electrodes. The band structure of single layer graphene (SLG), with zero-gap, linearly dispersive conduction and valence bands, enables an easy control of the Fermi energy, EF, and of the threshold for interband optical absorption. Here, we report the tunability of the SLG nonequilibrium optical response in the near-infrared (1000-1700 nm/0.729-1.240 eV), exploring a range of EF from -650 to 250 meV by ionic liquid gating. As EF increases from the Dirac point to the threshold for Pauli blocking of interband absorption, we observe a slow-down of the photobleaching relaxation dynamics, which we attribute to the quenching of optical phonon emission from photoexcited charge carriers. For EF exceeding the Pauli blocking threshold, photobleaching eventually turns into photoinduced absorption, because the hot electrons' excitation increases the SLG absorption. The ability to control both recovery time and sign of the nonequilibrium optical response by electrostatic gating makes SLG ideal for tunable saturable absorbers with controlled dynamics.

2.
Nanoscale ; 11(8): 3619-3625, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30741298

ABSTRACT

Graphene field-effect transistors (GFETs) offer a possibility of exploiting unique physical properties of graphene in realizing novel electronic circuits. However, graphene circuits often lack the voltage swing and switchability of Si complementary metal-oxide-semiconductor (CMOS) circuits, which are the main building block of modern electronics. Here we introduce graphene in Si CMOS circuits to exploit favorable electronic properties of both technologies and realize a new class of simple oscillators using only a GFET, Si CMOS D latch, and timing RC circuit. The operation of the two types of realized oscillators is based on the ambipolarity of graphene, i.e., the symmetry of the transfer curve of GFETs around the Dirac point. The ambipolarity of graphene also allowed to turn the oscillators into pulse-width modulators (with a duty cycle ratio ∼1 : 4) and voltage-controlled oscillators (with a frequency ratio ∼1 : 8) without any circuit modifications. The oscillation frequency was in the range from 4 kHz to 4 MHz and limited only by the external circuit connections, rather than components themselves. The demonstrated graphene-Si CMOS hybrid circuits pave the way to the more widespread adoption of graphene in electronics.

3.
Nano Lett ; 18(8): 4675-4683, 2018 08 08.
Article in English | MEDLINE | ID: mdl-30029573

ABSTRACT

We show that polar molecules (water, ammonia, and nitrogen dioxide) adsorbed solely at the exposed edges of an encapsulated graphene sheet exhibit ferroelectricity, collectively orienting and switching reproducibly between two available states in response to an external electric field. This ferroelectric molecular switching introduces drastic modifications to the graphene bulk conductivity and produces a large and ambipolar charge bistability in micrometer-size graphene devices. This system comprises an experimental realization of envisioned memory capacitive ("memcapacitive") devices whose capacitance is a function of their charging history, here conceived via confined and correlated polar molecules at the one-dimensional edge of a two-dimensional crystal.

4.
Sci Rep ; 7(1): 2419, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28546634

ABSTRACT

The high-frequency performance of transistors is usually assessed by speed and gain figures of merit, such as the maximum oscillation frequency f max, cutoff frequency f T, ratio f max/f T, forward transmission coefficient S 21, and open-circuit voltage gain A v. All these figures of merit must be as large as possible for transistors to be useful in practical electronics applications. Here we demonstrate high-performance graphene field-effect transistors (GFETs) with a thin AlOx gate dielectric which outperform previous state-of-the-art GFETs: we obtained f max/f T > 3, A v > 30 dB, and S 21 = 12.5 dB (at 10 MHz and depending on the transistor geometry) from S-parameter measurements. A dc characterization of GFETs in ambient conditions reveals good current saturation and relatively large transconductance ~600 S/m. The realized GFETs offer the prospect of using graphene in a much wider range of electronic applications which require substantial gain.

SELECTION OF CITATIONS
SEARCH DETAIL
...