Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.667
Filter
1.
J Comp Pathol ; 212: 27-31, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968671

ABSTRACT

The tissue tropism and the wide host range of influenza A viruses are determined by the presence of sialic acid (SA) α2,3-Gal and SA α2,6-Gal receptors. Recent studies have shown that animals possessing both receptors allow for the rearrangement and emergence of new viral strains of public health importance. This study aimed to evaluate the expression and distribution of human and avian influenza A receptors in nine Neotropical snake species using lectin immunohistochemistry. We selected 17 snakes that were examined post mortem at the Veterinary Pathology Sector of the Universidade Federal de Minas Gerais between 2019 and 2023. Sections of nasal turbinate, trachea, lung, oral mucosa, stomach and intestine were subjected to immunohistochemical analysis using the lectins Maackia amurensis and Sambucus nigra. This research detected, for the first time, co-expression of SA α2,3-Gal and SA α2,6-Gal receptors in the respiratory and digestive tracts of snakes, indicating the possible susceptibility of these species to influenza A virus of avian and human origin. Consequently, snakes can be considered important species for monitoring influenza A in wild, urban and peri-urban environments. More studies should be conducted to investigate the role of snakes in influenza A epidemiology.

2.
F1000Res ; 13: 301, 2024.
Article in English | MEDLINE | ID: mdl-38957377

ABSTRACT

The accelerated urban sprawl of cities around the world presents major challenges for urban planning and land resource management. In this context, it is crucial to have a detailed 3D representation of buildings enriched with accurate alphanumeric information. A distinctive aspect of this proposal is its specific focus on the spatial unit corresponding to buildings. In order to propose a domain model for the 3D representation of buildings, the national standard of Ecuador and the international standard (ISO 19152:2012 LADM) were considered. The proposal includes a detailed specification of attributes, both for the general subclass of buildings and for their infrastructure. The application of the domain model proposal was crucial in a study area located in the Riobamba canton, due to the characteristics of the buildings in that area. For this purpose, a geodatabase was created in pgAdmin4 with official information, taking into account the structure of the proposed model and linking it with geospatial data for an adequate management and 3D representation of the buildings in an open-source Geographic Information System. This application improves cadastral management in the study region and has wider implications. This model is intended to serve as a benchmark for other countries facing similar challenges in cadastral management and 3D representation of buildings, promote efficient urban development and contribute to global sustainable development.


Subject(s)
Cities , Ecuador , City Planning , Imaging, Three-Dimensional , Humans , Geographic Information Systems , Models, Theoretical
3.
Hypertens Res ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961282

ABSTRACT

G protein-coupled receptors (GPCRs) mediate cellular responses to a myriad of hormones and neurotransmitters that play vital roles in the regulation of physiological processes such as blood pressure. In organs such as the artery and kidney, hormones or neurotransmitters, such as angiotensin II (Ang II), dopamine, epinephrine, and norepinephrine exert their functions via their receptors, with the ultimate effect of keeping normal vascular reactivity, normal body sodium, and normal blood pressure. GPCR kinases (GRKs) exert their biological functions, by mediating the regulation of agonist-occupied GPCRs, non-GPCRs, or non-receptor substrates. In particular, increasing number of studies show that aberrant expression and activity of GRKs in the cardiovascular system and kidney inhibit or stimulate GPCRs (e.g., dopamine receptors, Ang II receptors, and α- and ß-adrenergic receptors), resulting in hypertension. Current studies focus on the effect of selective GRK inhibitors in cardiovascular diseases, including hypertension. Moreover, genetic studies show that GRK gene variants are associated with essential hypertension, blood pressure response to antihypertensive medicines, and adverse cardiovascular outcomes of antihypertensive treatment. In this review, we present a comprehensive overview of GRK-mediated regulation of blood pressure, role of GRKs in the pathogenesis of hypertension, and highlight potential strategies for the treatment of hypertension. Schematic representation of GPCR desensitization process. Activation of GPCRs begins with the binding of an agonist to its corresponding receptor. Then G proteins activate downstream effectors that are mediated by various signaling pathways. GPCR signaling is halted by GRK-mediated receptor phosphorylation, which causes receptor internalization through ß-arrestin.

4.
Sci Rep ; 14(1): 15407, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965251

ABSTRACT

The kidney and brain play critical roles in the regulation of blood pressure. Neuropeptide FF (NPFF), originally isolated from the bovine brain, has been suggested to contribute to the pathogenesis of hypertension. However, the roles of NPFF and its receptors, NPFF-R1 and NPFF-R2, in the regulation of blood pressure, via the kidney, are not known. In this study, we found that the transcripts and proteins of NPFF and its receptors, NPFF-R1 and NPFF-R2, were expressed in mouse and human renal proximal tubules (RPTs). In mouse RPT cells (RPTCs), NPFF, but not RF-amide-related peptide-2 (RFRP-2), decreased the forskolin-stimulated cAMP production in a concentration- and time-dependent manner. Furthermore, dopamine D1-like receptors colocalized and co-immunoprecipitated with NPFF-R1 and NPFF-R2 in human RPTCs. The increase in cAMP production in human RPTCs caused by fenoldopam, a D1-like receptor agonist, was attenuated by NPFF, indicating an antagonistic interaction between NPFF and D1-like receptors. The renal subcapsular infusion of NPFF in C57BL/6 mice decreased renal sodium excretion and increased blood pressure. The NPFF-mediated increase in blood pressure was prevented by RF-9, an antagonist of NPFF receptors. Taken together, our findings suggest that autocrine NPFF and its receptors in the kidney regulate blood pressure, but the mechanisms remain to be determined.


Subject(s)
Autocrine Communication , Blood Pressure , Cyclic AMP , Oligopeptides , Signal Transduction , Animals , Humans , Mice , Cyclic AMP/metabolism , Oligopeptides/pharmacology , Oligopeptides/metabolism , Receptors, Neuropeptide/metabolism , Kidney Tubules, Proximal/metabolism , Male , Kidney/metabolism , Mice, Inbred C57BL , Receptors, Dopamine D1/metabolism
5.
Front Immunol ; 15: 1431351, 2024.
Article in English | MEDLINE | ID: mdl-38989287

ABSTRACT

Background: Polymerized allergoids conjugated with mannan represent a novel approach of allergen immunotherapy targeting dendritic cells. In this study, we aimed to determine the optimal dose of mannan-allergoid conjugates derived from grass pollen (Phleum pratense and Dactylis glomerata) administered via either the subcutaneous or sublingual route. Methods: A randomized, double-blind, placebo-controlled trial with a double-dummy design was conducted, involving 162 participants across 12 centers in Spain. Subjects were randomly allocated to one of nine different treatment groups, each receiving either placebo or active treatment at doses of 500, 1,000, 3,000, or 5,000 mTU/mL over four months. Each participant received five subcutaneous (SC) doses of 0.5 mL each, every 30 days, and a daily sublingual (SL) dose of 0.2 mL. Participants who received active treatment through SC, received placebo through SL. Participants who received active treatment through SL, received placebo SC. One Group, as control, received bot SC and SL placebo. The primary efficacy outcome was the improvement in titrated nasal provocation tests (NPT) at the end of the study compared to baseline. Secondary outcomes included specific antibody (IgG4, IgE) and cellular (IL-10 producing and regulatory T cell) responses. All adverse events and side reactions were recorded and assessed. Results: Post-treatment, the active groups showed improvements in NPT ranging from 33% to 53%, with the highest doses showing the greatest improvements regardless of the administration route. In comparison, the placebo group showed a 12% improvement. Significant differences over placebo were observed at doses of 3,000 mTU/mL (p=0.049 for SL, p=0.015 for SC) and 5,000 mTU/mL (p=0.011 for SL, p=0.015 for SC). A dose-dependent increase in IgG4 was observed following SC administration, and an increase in IL-10 producing cells for both routes of administration. No serious systemic or local adverse reactions were recorded, and no adrenaline was required. Conclusion: Grass pollen immunotherapy with mannan-allergoid conjugates was found to be safe and efficacious in achieving the primary outcome, whether administered via the subcutaneous or sublingual routes, at doses of 3,000 and 5,000 mTU/mL. Clinical trial registration: https://www.clinicaltrialsregister.eu/ctr-search (EudraCT), identifier 2014-005471-88; https://www.clinicaltrials.gov, identifier NCT02654223.


Subject(s)
Allergens , Allergoids , Desensitization, Immunologic , Mannans , Poaceae , Pollen , Sublingual Immunotherapy , Humans , Male , Female , Adult , Pollen/immunology , Mannans/administration & dosage , Allergens/immunology , Allergens/administration & dosage , Sublingual Immunotherapy/methods , Sublingual Immunotherapy/adverse effects , Injections, Subcutaneous , Poaceae/immunology , Middle Aged , Desensitization, Immunologic/methods , Desensitization, Immunologic/adverse effects , Double-Blind Method , Rhinitis, Allergic, Seasonal/therapy , Rhinitis, Allergic, Seasonal/immunology , Administration, Sublingual , Treatment Outcome , Young Adult , Immunoglobulin E/immunology
7.
Data Brief ; 55: 110593, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38974003

ABSTRACT

Synthetic organic chemicals, including pesticides, pharmaceuticals, and industrial compounds, pose a growing threat to marine ecosystems. Despite their potential impact, data on the co-occurrence of these contaminants in multiple compartments, including surface water, bottom water, porewater, and sediment in the marine environment remains limited. Such information is critical for assessing coastal chemical status, establishing environmental quality benchmarks, and conducting comprehensive environmental risk assessments. In this study, we describe a multifaceted monitoring campaign targeting pesticides, pharmaceuticals, surfactants, additives, and plasticizers among other synthetic chemicals in four sampling sites. One site was located in the small Coliumo bay affected by urban settlements and tourism in central-south and additionally, we sampled three sites, Caucahue Channel, affected by urban settlements and salmon farming in northern Patagonia in Chile. Surface water, bottom water, porewater, and adjacent sediment samples were collected for target screening analysis in LC- and GC-HRMS platforms. Our results show the detection of up to 83 chemicals in surface water, 71 in bottom water, 101 in porewater, and 244 in sediments. To enhance data utility and reuse potential, we provide valuable information on the mode of action and molecular targets of the identified chemicals. This comprehensive dataset contributes to defining pollution fingerprints in coastal areas of the Global South, including remote regions in Patagonia. It serves as a critical resource for future research including marine chemical risk assessment, policymaking, and the advancement of environmental protection in these regions.

8.
Res Sq ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38978575

ABSTRACT

Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of multimodal diversity (geographical, socioeconomic, sociodemographic, sex, neurodegeneration) on the brain age gap (BAG) is unknown. Here, we analyzed datasets from 5,306 participants across 15 countries (7 Latin American countries -LAC, 8 non-LAC). Based on higher-order interactions in brain signals, we developed a BAG deep learning architecture for functional magnetic resonance imaging (fMRI=2,953) and electroencephalography (EEG=2,353). The datasets comprised healthy controls, and individuals with mild cognitive impairment, Alzheimer's disease, and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (fMRI: MDE=5.60, RMSE=11.91; EEG: MDE=5.34, RMSE=9.82) compared to non-LAC, associated with frontoposterior networks. Structural socioeconomic inequality and other disparity-related factors (pollution, health disparities) were influential predictors of increased brain age gaps, especially in LAC (R2=0.37, F2=0.59, RMSE=6.9). A gradient of increasing BAG from controls to mild cognitive impairment to Alzheimer's disease was found. In LAC, we observed larger BAGs in females in control and Alzheimer's disease groups compared to respective males. Results were not explained by variations in signal quality, demographics, or acquisition methods. Findings provide a quantitative framework capturing the multimodal diversity of accelerated brain aging.

9.
Sensors (Basel) ; 24(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000958

ABSTRACT

Pollution by heavy metal ions has a serious impact on human health and the environment, which is why the monitoring of heavy metal ions is of great practical importance. In this work, we describe the development of an electrochemical sensor for the detection of cadmium (Cd2+) involving the doping of porous SiO2 spheres with ZnO nanoparticles. Zinc oxide is chosen as the central dopant in the composite material to increase the conductivity and thus improve the electrochemical detection of Cd2+ ions with the SiO2 spheres. The resulting composite is characterized by electrochemical spectroscopic XRD and microscopic methods. As a result, the developed sensor shows good selectivity towards the targeted Cd2+ ions compared to other divalent ions. After optimization of the experimental conditions, the electrochemical sensor shows two different linear ranges between 2.5 × 10-11 molL-1 to 1.75 × 10-10 molL-1 and 2 × 10-9 molL-1 to 1.75 × 10-9 molL-1, indicating a change from diffusion-controlled to surface-controlled oxidation of Cd2+. A detection limit was reached at 4.4 × 10-11 molL-1. In addition, it offers good repeatability and recovery, and can detect accurate trace amounts of Cd2+ ions in real samples such as tap water or seawater by spiking these samples with known Cd2+ concentrations. This setup also provides satisfactory recovery rates in the range of 89-102%.

10.
Forensic Sci Res ; 9(3): owae006, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39006155

ABSTRACT

In forensic scenarios, such as armed conflicts or mass disasters, the oral cavity can be a valuable source of identification information relevant to legal issues. In many European Union countries, it is mandatory to register dental records for identification purposes. A pilot and quasi-experimental study was performed. The study aims to analyze two methodologies, photography and wireless intraoral (IO) laser scanner, in the scope of the orofacial record in forensic pathology, highlighting their impact on human identification. The IO scanner i700 (Medit, Lusobionic, Portugal) and Canon 5D-Full Frame equipment were used to record the individual status, living patients (n = 5), and forensic cases (n = 5). IO and extraoral anatomical structures were recorded following six parameters: time, mineralized and soft detail, communication, extra devices, and distortion. The statistical analysis was performed in accordance with a scoring system and Mann-Whitney (P < 0.05) analysis. The photography method recorded extraoral data for all samples (score range between 15 and 23). The time elapsed to complete an IO scan in forensic cases was shorter than with photography, without requiring additional sources of light or mirror devices. Living patients and corpses identified statistically significant differences. It can be concluded that laser scanners are a valuable tool in the field of forensic pathology and can be used to record and analyze anatomic-morphological data for identification purposes accurately. Key points: Human identification engages in orofacial details records.Photographic and laser scans record intraoral and extraoral anatomic structures.Forensic cases assessed by intraoral scanner technology are accurate and less time-consuming, optimizing the orofacial data for identification.

11.
Arch Toxicol ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004640

ABSTRACT

The risk of the use of toxic chemicals for unlawful acts has been a matter of concern for different governments and multilateral agencies. The Organisation for the Prohibition of Chemical Weapons (OPCW), which oversees the implementation of the Chemical Weapons Convention (CWC), considering recent events employing chemical warfare agents as means of assassination, has recently included in the CWC "Annex on Chemicals" some organophosphorus compounds that are regarded as acting in a similar fashion to the classical G- and V-series of nerve agents, inhibiting the pivotal enzyme acetylcholinesterase. Therefore, knowledge of the activity of the pyridinium oximes, the sole class of clinically available acetylcholinesterase reactivators to date, is plainly justified. In this paper, continuing our research efforts in medicinal chemistry on this class of toxic chemicals, we synthesized an A-230 nerve agent surrogate and applied a modified Ellman's assay to evaluate its ability to inhibit our enzymatic model, acetylcholinesterase from Electrophorus eel, and if the clinically available antidotes are able to rescue the enzyme activity for the purpose of relating the findings to the previously disclosed in silico data for the authentic nerve agent and other studies with similar A-series surrogates. Our experimental data indicates that pralidoxime is the most efficient compound for reactivating acetylcholinesterase inhibited by A-230 surrogate, which is the opposite of the in silico data previously disclosed.

12.
medRxiv ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39006446

ABSTRACT

Post-acute sequelae of SARS-CoV-2 (SARS2) infection (PASC) is a heterogeneous condition, but the main viral drivers are unknown. Here, we use MENSA, Media Enriched with Newly Synthesized Antibodies, secreted exclusively from circulating human plasmablasts, to provide an immune snapshot that defines the underlying viral triggers. We provide proof-of-concept testing that the MENSA technology can capture the new host immune response to accurately diagnose acute primary and breakthrough infections when known SARS2 virus or proteins are present. It is also positive after vaccination when spike proteins elicit an acute immune response. Applying the same principles for long-COVID patients, MENSA is positive for SARS2 in 40% of PASC vs none of the COVID recovered (CR) patients without any sequelae demonstrating ongoing SARS2 viral inflammation only in PASC. Additionally, in PASC patients, MENSAs are also positive for Epstein-Barr Virus (EBV) in 37%, Human Cytomegalovirus (CMV) in 23%, and herpes simplex virus 2 (HSV2) in 15% compared to 17%, 4%, and 4% in CR controls respectively. Combined, a total of 60% of PASC patients have a positive MENSA for SARS2, EBV, CMV, and/or HSV2. MENSA offers a unique antibody snapshot to reveal the underlying viral drivers in long-COVID thus demonstrating the persistence of SARS2 and reactivation of viral herpes in 60% of PASC patients.

13.
Cells ; 13(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38994930

ABSTRACT

B cell epitopes must be visible for recognition by cognate B cells and/or antibodies. Here, we studied that premise for known linear B cell epitopes that were collected from the Immune Epitope Database as being recognized by humans during microbial infections. We found that the majority of such known B cell epitopes are virus-specific linear B cell epitopes (87.96%), and most are located in antigens that remain enclosed in host cells and/or virus particles, preventing antibody recognition (18,832 out of 29,225 epitopes). Moreover, we estimated that only a minority (32.72%) of the virus-specific linear B cell epitopes that are found in exposed viral regions (e.g., the ectodomains of envelope proteins) are solvent accessible on intact antigens. Hence, we conclude that ample degradation/processing of viral particles and/or infected cells must occur prior to B cell recognition, thus shaping the B cell epitope repertoire.


Subject(s)
Epitopes, B-Lymphocyte , Epitopes, B-Lymphocyte/immunology , Humans , B-Lymphocytes/immunology , Antigens, Viral/immunology , Proteolysis , Viruses/immunology
14.
Rapid Commun Mass Spectrom ; 38(17): e9855, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38988294

ABSTRACT

RATIONALE: Rivaroxaban is an anticoagulant prescribed to patients who are at risk of medical conditions such as deep-vein thrombosis, pulmonary embolisms, and strokes caused by blood clots. The administration of this drug is monitored to adjust the dosage and evaluate patients' blood concentration. Rapid quantification of this drug in plasma could make it possible to ensure that the dose present in the blood of patients does not represent a danger for the medical intervention to be carried out. METHODS: Liquid chromatography-tandem mass spectrometry is usually employed to quantify rivaroxaban in blood, plasma, and serum. Here, an alternative method of analysis based on laser diode thermal desorption-triple quadrupole mass spectrometry (LDTD-QqQMS) was developed and comprehensively validated. This new method allows the quantification of rivaroxaban in less than 13 s from sample to sample. The extraction of rivaroxaban in human serum was done by a salting-out liquid-liquid extraction with acetonitrile and a saturated sodium chloride solution. RESULTS: The proposed method allows the quantification of rivaroxaban in less than 13 s from sample to sample. During validation, all criteria were respected. The accuracy was <15% of the nominal value, the precision was <15%CV, and the recovery was ≥89.9%. There were no observed carryover or matrix effects. Analysis of the extracted samples established the stability of dry (24 h) and wet samples (1 week) when samples cannot be analyzed immediately, a considerable advantage in a clinical setting. CONCLUSIONS: This method improves sample throughput by more than 1200% compared to liquid chromatography-tandem mass spectrometry methods of analysis of rivaroxaban and decreases analysis costs by reducing solvent consumption and instrument time.


Subject(s)
Rivaroxaban , Tandem Mass Spectrometry , Rivaroxaban/blood , Humans , Tandem Mass Spectrometry/methods , Reproducibility of Results , Limit of Detection , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Linear Models
15.
Langmuir ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007738

ABSTRACT

Pesticides are crucial in modern agriculture because they reduce pests and boost yield, but they also represent major risks to human health and the environment; therefore, it is important to monitor their presence in food. Reliable and precise detection techniques are possible ways to address this issue. In this work, we utilize atomically thin (two-dimensional) cobalt telluride (CoTe2) with a high surface area and charge as a template material to detect mancozeb using spectroscopic and electrochemical techniques. When mancozeb (MNZ) molecules interact with 2D CoTe2, spectroscopic analyses reveal distinctive spectral shifts that clarify the underlying chemical interactions and binding mechanisms. Furthermore, CoTe2's electroactive sites and their manipulation for improved sensitivity and selectivity toward certain MNZ molecules are investigated by electrochemical studies. The CoTe2/GCE electrode exhibits enhanced electrochemical activity toward the electrooxidation of MNZ. The developed sensing electrode shows a linear range from 0.184 mM to 18.48 µM and a limit of detection of about 0.18 µM. In addition, we employ density functional theory (DFT) first-principles calculations to validate the experimental findings and comprehend the mechanism behind the interaction between CoTe2 and MNZ molecules. The study highlights the effectiveness of 2D CoTe2 as a dual-mode sensing platform for qualitative and quantitative assessment of MNZ pollutants, demonstrated by the integration of electrochemistry and spectroscopy and the critical role that 2D CoTe2-based sensors can play in accurate and efficient pesticide detection, which is required for agricultural safety protocols and environmental monitoring.

16.
Environ Res ; 259: 119535, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969315

ABSTRACT

The oyster aquaculture sector plays a major role in food security, providing a sustainable way to obtain food and livelihood for coastal and Island nations. Oysters are one of the preferred choices by aquaculturists because of their resilience to harsh climatic conditions. Nonetheless, climate change will continue to pose threats to its culture. Climate-induced hazards such as floods, storms, disease, and invasive species are some of the key factors limiting oyster production globally. A thriving aquaculture industry needs optimal conditions to maximize exploitation. Here, we continue with the review of the impacts of climate change on oyster aquaculture at the global scale, highlighting climate vulnerability assessment. We also propose a framework for modeling oyster responses to future climate scenarios. Furthermore, we explore the health implications of infected oysters on consumer's health. We also identify knowledge gaps and challenges for sustainable oyster production. Additionally, we document mitigation and adaptation measures and future research directions.

17.
An Acad Bras Cienc ; 96(suppl 2): e20230744, 2024.
Article in English | MEDLINE | ID: mdl-39016362

ABSTRACT

The Brazil-Malvinas Confluence (BMC) is a significant biological frontier where distinct currents meet, fostering optimal conditions for phytoplankton development. In this study we tested the hypothesis that eddys promote an increase in phytoplankton biomass at the Brazil-Malvinas Confluence (BMC), altering species diversity. Phytoplankton were collected with Niskin bottles and nutrient concentrations assessed at two depths (Surface and Deep Chlorophyll Maximum Layer - DCML) in areas outside and under the influence of Cold-Core (CCE) and Warm-Core (WCE) Eddies. Environmental variables were determined in situ using a CTD profiler. Four regions were separated based on environmental variables and phytoplankton species, namely, the Brazil Current (BC), Malvinas Current (MC), CCE, and WCE. Species diversity was higher in the eddies. The conditions of the WCE were different from those of the CCE, with low temperature and salinity and high cell density values in the latter. The phylum Bacillariophyta was predominant in terms of species richness in all regions and was responsible for the higher cell density in the MC, while dinoflagellates were dominant in the BC and eddies. Therefore, eddy activity alters the structure, diversity and biomass of the phytoplankton community in the BMC.


Subject(s)
Biodiversity , Biomass , Phytoplankton , Phytoplankton/classification , Phytoplankton/growth & development , Brazil , Seasons , Chlorophyll/analysis , Water Movements , Temperature
18.
Soft Matter ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018087

ABSTRACT

We study the influence of core-shell morphology on the structural characteristics of nanogels. Using computer simulations, we examine three different types of systems, distinguished by their intermonomer interactions: those with excluded volume only; those with charged monomers and excluded volume; and those with excluded volume combined with a certain number of magnetised nanoparticles incorporated within the nanogel. We observe that if the polymers in the shell are short and dense, they tend to penetrate the core. This effect of backfolding is enhanced in charged nanogels, regardless of whether all monomers are charged, or only the core or shell ones. The presence of an experimentally available amount of magnetic nanoparticles in a gel, on the one hand, does not lead to any significant morphological changes. On the other hand, the morphology of the nanogel with magnetic particles has an impact on its magnetic susceptibility. Particular growth of the magnetic response is observed if a long shell of a nanogel is functionalised.

19.
Transplantation ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39012953

ABSTRACT

BACKGROUND: Thoracoabdominal normothermic regional perfusion (TA-NRP) has emerged as a powerful technique for optimizing organ procurement from donation after circulatory death donors. Despite its rapid adoption, standardized guidelines for TA-NRP implementation are lacking, prompting the need for consensus recommendations to ensure safe and effective utilization of this technique. METHODS: A working group composed of members from The American Society of Transplant Surgeons, The International Society of Heart and Lung Transplantation, The Society of Thoracic Surgeons, and The American Association for Thoracic Surgery was convened to develop technical guidelines for TA-NRP. The group systematically reviewed existing literature, consensus statements, and expert opinions to identify key areas requiring standardization, including predonation evaluation, intraoperative management, postdonation procedures, and future research directions. RESULTS: The working group formulated recommendations encompassing donor evaluation and selection criteria, premortem testing and therapeutic interventions, communication protocols, and procedural guidelines for TA-NRP implementation. These recommendations aim to facilitate coordination among transplant teams, minimize variability in practice, and promote transparency and accountability throughout the TA-NRP process. CONCLUSIONS: The consensus guidelines presented herein serve as a comprehensive framework for the successful and ethical implementation of TA-NRP programs in organ procurement from donation after circulatory death donors. By providing standardized recommendations and addressing areas of uncertainty, these guidelines aim to enhance the quality, safety, and efficiency of TA-NRP procedures, ultimately contributing to improved outcomes for transplant recipients.

20.
Front Plant Sci ; 15: 1388841, 2024.
Article in English | MEDLINE | ID: mdl-38835860

ABSTRACT

Trichoderma strains used in vineyards for the control of grapevine trunk diseases (GTDs) present a promising alternative to chemical products. Therefore, the isolation and characterization of new indigenous Trichoderma strains for these purposes is a valuable strategy to favor the adaptation of these strains to the environment, thus improving their efficacy in the field. In this research, a new Trichoderma species, Trichoderma carraovejensis, isolated from vineyards in Ribera de Duero (Spain) area, has been identified and phylogenetically analyzed using 20 housekeeping genes isolated from the genome of 24 Trichoderma species. A morphological description and comparison of the new species has also been carried out. In order to corroborate the potential of T. carraovejensis as a biological control agent (BCA), confrontation tests against pathogenic fungi, causing various GTDs, have been performed in the laboratory. The compatibility of T. carraovejensis with different pesticides and biostimulants has also been assessed. This new Trichoderma species demonstrates the ability to control pathogens such as Diplodia seriata, as well as high compatibility with powdered sulfur-based pesticides. In conclusion, the autochthonous species T. carraovejensis can be an effective alternative to complement the currently used strategies for the control of wood diseases in its region of origin.

SELECTION OF CITATIONS
SEARCH DETAIL
...