Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Bioeng Transl Med ; 5(3): e10167, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33005737

ABSTRACT

The wasp venom-derived antimicrobial peptide polybia-CP has been previously shown to exhibit potent antimicrobial activity, but it is also highly toxic. Previously, using a physicochemical-guided peptide design strategy, we reversed its toxicity while preserving and even enhancing its antibacterial properties. Here, we report on several additional unanticipated biological properties of polybia-CP and derivatives, namely their ability to target Plasmodium sporozoites and cancer cells. We leverage a physicochemical-guided approach to identify features that operate as functional hotspots making these peptides viable antiplasmodial and anticancer agents. Helical content and net positive charge are identified as key structural and physicochemical determinants for antiplasmodial activity. In addition to helicity and net charge, hydrophobicity-related properties of polybia-CP and derivatives were found to be equally critical to target cancer cells. We demonstrate that by tuning these physicochemical parameters, it is possible to design synthetic peptides with enhanced submicromolar antiplasmodial potency and micromolar anticancer activity. This study reveals novel and previously undescribed functions for Polybia-CP and analogs. Additionally, we demonstrate that a physicochemical-guided rational design strategy can be used for identifying functional hotspots in peptide molecules and for tuning structure-function to generate novel and potent new-to-nature therapies.

2.
Commun Biol ; 1: 221, 2018.
Article in English | MEDLINE | ID: mdl-30534613

ABSTRACT

Antimicrobial peptides (AMPs) constitute promising alternatives to classical antibiotics for the treatment of drug-resistant infections, which are a rapidly emerging global health challenge. However, our understanding of the structure-function relationships of AMPs is limited, and we are just beginning to rationally engineer peptides in order to develop them as therapeutics. Here, we leverage a physicochemical-guided peptide design strategy to identify specific functional hotspots in the wasp-derived AMP polybia-CP and turn this toxic peptide into a viable antimicrobial. Helical fraction, hydrophobicity, and hydrophobic moment are identified as key structural and physicochemical determinants of antimicrobial activity, utilized in combination with rational engineering to generate synthetic AMPs with therapeutic activity in a mouse model. We demonstrate that, by tuning these physicochemical parameters, it is possible to design nontoxic synthetic peptides with enhanced sub-micromolar antimicrobial potency in vitro and anti-infective activity in vivo. We present a physicochemical-guided rational design strategy to generate peptide antibiotics.

3.
Beilstein J Org Chem ; 14: 1693-1703, 2018.
Article in English | MEDLINE | ID: mdl-30013694

ABSTRACT

About 1 in 8 U.S. women (≈12%) will develop invasive breast cancer over the course of their lifetime. Surgery, chemotherapy, radiotherapy, and hormone manipulation constitute the major treatment options for breast cancer. Here, we show that both a natural antimicrobial peptide (AMP) derived from wasp venom (decoralin, Dec-NH2), and its synthetic variants generated via peptide design, display potent activity against cancer cells. We tested the derivatives at increasing doses and observed anticancer activity at concentrations as low as 12.5 µmol L-1 for the selective targeting of MCF-7 breast cancer cells. Flow cytometry assays further revealed that treatment with wild-type (WT) peptide Dec-NH2 led to necrosis of MCF-7 cells. Additional atomic force microscopy (AFM) measurements indicated that the roughness of cancer cell membranes increased significantly when treated with lead peptides compared to controls. Biophysical features such as helicity, hydrophobicity, and net positive charge were identified to play an important role in the anticancer activity of the peptides. Indeed, abrupt changes in peptide hydrophobicity and conformational propensity led to peptide inactivation, whereas increasing the net positive charge of peptides enhanced their activity. We present peptide templates with selective activity towards breast cancer cells that leave normal cells unaffected. These templates represent excellent scaffolds for the design of selective anticancer peptide therapeutics.

4.
Commun Biol, v. 1, 221, dez. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2658

ABSTRACT

Antimicrobial peptides (AMPs) constitute promising alternatives to classical antibiotics for the treatment of drug-resistant infections, which are a rapidly emerging global health challenge. However, our understanding of the structure-function relationships of AMPs is limited, and we are just beginning to rationally engineer peptides in order to develop them as therapeutics. Here, we leverage a physicochemical-guided peptide design strategy to identify specific functional hotspots in the wasp-derived AMP polybia-CP and turn this toxic peptide into a viable antimicrobial. Helical fraction, hydrophobicity, and hydrophobic moment are identified as key structural and physicochemical determinants of antimicrobial activity, utilized in combination with rational engineering to generate synthetic AMPs with therapeutic activity in a mouse model. We demonstrate that, by tuning these physicochemical parameters, it is possible to design nontoxic synthetic peptides with enhanced sub-micromolar antimicrobial potency in vitro and anti-infective activity in vivo. We present a physicochemical-guided rational design strategy to generate peptide antibiotics.

5.
Commun Biol ; 1: 221, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15801

ABSTRACT

Antimicrobial peptides (AMPs) constitute promising alternatives to classical antibiotics for the treatment of drug-resistant infections, which are a rapidly emerging global health challenge. However, our understanding of the structure-function relationships of AMPs is limited, and we are just beginning to rationally engineer peptides in order to develop them as therapeutics. Here, we leverage a physicochemical-guided peptide design strategy to identify specific functional hotspots in the wasp-derived AMP polybia-CP and turn this toxic peptide into a viable antimicrobial. Helical fraction, hydrophobicity, and hydrophobic moment are identified as key structural and physicochemical determinants of antimicrobial activity, utilized in combination with rational engineering to generate synthetic AMPs with therapeutic activity in a mouse model. We demonstrate that, by tuning these physicochemical parameters, it is possible to design nontoxic synthetic peptides with enhanced sub-micromolar antimicrobial potency in vitro and anti-infective activity in vivo. We present a physicochemical-guided rational design strategy to generate peptide antibiotics.

6.
ChemistrySelect ; 2(1): 18-23, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15493

ABSTRACT

Decoralin is an antimicrobial peptide with activity against microorganisms and pronounced hemolytic activity. Decoralin analogs have been proposed, and the results indicated that when isoleucine at position 6 was substituted by phenylalanine residue, the peptides exhibited increased resistance towards enzymes action. Besides that, lower hemolytic activity was obtained for [Pro](4)-Decoralin-NH2 and [Phe](6)-Des[Thr](11)-Decoralin-NH2; this effect is probably due to their poor helical tendency. [Arg](1)-Decoralin-NH2 exhibited + 4 net charge and lower hemolytic activity (25.0 mu mol L-1) and even showed helical propensity; as a consequence, it presented the higher therapeutic indexes (values from 16.0 to 32.0). The helical conformational tendency is believed to be determinant of the antimicrobial activity of this decoralin family and has been shown to be as important as the increased positive net charge. This points to a new direction for the design of potential chemotherapeutic agents.

7.
Bioorg Med Chem Lett ; 25(16): 3311-3, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26077496

ABSTRACT

To find effective new candidate antimalarial drugs, bradykinin and its analogs were synthesized and tested for effectiveness against Plasmodium gallinaceum sporozoites and Plasmodium falciparum on erythrocytes. Among them, bradykinin and its P2 analog presented high activity against Plasmodium gallinaceum, but they degrade in plasma. On the other hand, RI-BbKI did not degrade and reached high activity. No analog was active against Plasmodium falciparum.


Subject(s)
Antimalarials/pharmacology , Bradykinin/pharmacology , Peptides/pharmacology , Plasmodium falciparum/drug effects , Plasmodium gallinaceum/drug effects , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Bradykinin/chemistry , Bradykinin/genetics , Humans , Peptides/chemical synthesis , Peptides/chemistry , Peptides/genetics , Sporozoites/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...