Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(21): eadj8769, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787942

ABSTRACT

Circular RNAs (circRNAs) are a large class of noncoding RNAs. Despite the identification of thousands of circular transcripts, the biological significance of most of them remains unexplored, partly because of the lack of effective methods for generating loss-of-function animal models. In this study, we focused on circTulp4, an abundant circRNA derived from the Tulp4 gene that is enriched in the brain and synaptic compartments. By creating a circTulp4-deficient mouse model, in which we mutated the splice acceptor site responsible for generating circTulp4 without affecting the linear mRNA or protein levels, we were able to conduct a comprehensive phenotypic analysis. Our results demonstrate that circTulp4 is critical in regulating neuronal and brain physiology, modulating the strength of excitatory neurotransmission and sensitivity to aversive stimuli. This study provides evidence that circRNAs can regulate biologically relevant functions in neurons, with modulatory effects at multiple levels of the phenotype, establishing a proof of principle for the regulatory role of circRNAs in neural processes.


Subject(s)
Brain , RNA, Circular , Synaptic Transmission , RNA, Circular/genetics , Animals , Mice , Brain/metabolism , Brain/physiology , Mice, Knockout , Neurons/metabolism , Neurons/physiology
2.
Mol Ther ; 32(4): 1080-1095, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38310353

ABSTRACT

Abnormal tau accumulation is the hallmark of several neurodegenerative diseases, named tauopathies. Strategies aimed at reducing tau in the brain are promising therapeutic interventions, yet more precise therapies would require targeting specific nuclei and neuronal subpopulations affected by disease while avoiding global reduction of physiological tau. Here, we developed artificial microRNAs directed against the human MAPT mRNA to dwindle tau protein by engaging the endogenous RNA interference pathway. In human differentiated neurons in culture, microRNA-mediated tau reduction diminished neuronal firing without affecting neuronal morphology or impairing axonal transport. In the htau mouse model of tauopathy, we locally expressed artificial microRNAs in the prefrontal cortex (PFC), an area particularly vulnerable to initiating tau pathology in this model. Tau knockdown prevented the accumulation of insoluble and hyperphosphorylated tau, modulated firing activity of putative pyramidal neurons, and improved glucose uptake in the PFC. Moreover, such tau reduction prevented cognitive decline in aged htau mice. Our results suggest target engagement of designed tau-microRNAs to effectively reduce tau pathology, providing a proof of concept for a potential therapeutic approach based on local tau knockdown to rescue tauopathy-related phenotypes.


Subject(s)
MicroRNAs , Tauopathies , Mice , Humans , Animals , Aged , tau Proteins/genetics , tau Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Tauopathies/genetics , Tauopathies/therapy , Tauopathies/metabolism , Neurons/metabolism , Phenotype , Mice, Transgenic , Disease Models, Animal
3.
Cell Rep ; 36(8): 109572, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34433032

ABSTRACT

The dentate gyrus (DG) of the hippocampus plays a key role in memory formation, and it is known to be modulated by septal projections. By performing electrophysiology and optogenetics, we evaluated the role of cholinergic modulation in the processing of afferent inputs in the DG. We show that mature granule cells (GCs), but not adult-born immature neurons, have increased responses to afferent perforant path stimuli upon cholinergic modulation. This is due to a highly precise reconfiguration of inhibitory circuits, differentially affecting Parvalbumin and Somatostatin interneurons, resulting in a nicotinic-dependent perisomatic disinhibition of GCs. This circuit reorganization provides a mechanism by which mature GCs could escape the strong inhibition they receive, creating a window of opportunity for plasticity. Indeed, coincident activation of perforant path inputs with optogenetic release of acetylcholine produces a long-term potentiated response in GCs, essential for memory formation.


Subject(s)
Acetylcholine/pharmacology , Dentate Gyrus/metabolism , Interneurons/metabolism , Neural Inhibition/drug effects , Synaptic Transmission/drug effects , Animals , Mice , Mice, Transgenic , Optogenetics
4.
PLoS One ; 12(3): e0173584, 2017.
Article in English | MEDLINE | ID: mdl-28333955

ABSTRACT

Successful communication between a teacher and a student is at the core of pedagogy. A well known example of a pedagogical dialog is 'Meno', a socratic lesson of geometry in which a student learns (or 'discovers') how to double the area of a given square 'in essence, a demonstration of Pythagoras' theorem. In previous studies we found that after engaging in the dialog participants can be divided in two kinds: those who can only apply a rule to solve the problem presented in the dialog and those who can go beyond and generalize that knowledge to solve any square problems. Here we study the effectiveness of this socratic dialog in an experimental and a control high-school classrooms, and we explore the boundaries of what is learnt by testing subjects with a set of 9 problems of varying degrees of difficulty. We found that half of the adolescents did not learn anything from the dialog. The other half not only learned to solve the problem, but could abstract something more: the geometric notion that the diagonal can be used to solve diverse area problems. Conceptual knowledge is critical for achievement in geometry, and it is not clear whether geometric concepts emerge spontaneously on the basis of universal experience with space, or reflect intrinsic properties of the human mind. We show that, for half of the learners, an exampled-based Socratic dialog in lecture form can give rise to formal geometric knowledge that can be applied to new, different problems.


Subject(s)
Education , Learning , Adolescent , Communication , Female , Humans , Knowledge , Male , Problem Solving , School Teachers , Schools , Students , Thinking
SELECTION OF CITATIONS
SEARCH DETAIL
...