Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 14(2)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35214136

ABSTRACT

Rheumatoid arthritis (RA) is a disabling autoimmune disease whose treatment is ineffective for one-third of patients. Thus, the immunomodulatory potential of mesenchymal stromal/stem cells (MSCs) makes MSC-based therapy a promising approach to RA. This study aimed to explore the immunomodulatory action of human bone marrow (BM)-MSCs on myeloid dendritic cells (mDCs) and monocytes, especially on cytokines/chemokines involved in RA physiopathology. For that, LPS plus IFNγ-stimulated peripheral blood mononuclear cells from RA patients (n = 12) and healthy individuals (n = 6) were co-cultured with allogeneic BM-MSCs. TNF-α, CD83, CCR7 and MIP-1ß protein levels were assessed in mDCs, classical, intermediate, and non-classical monocytes. mRNA expression of other cytokines/chemokines was also evaluated. BM-MSCs effectively reduced TNF-α, CD83, CCR7 and MIP-1ß protein levels in mDCs and all monocyte subsets, in RA patients. The inhibition of TNF-α production was mainly achieved by the reduction of the percentage of cellsproducing this cytokine. BM-MSCs exhibited a remarkable suppressive action over antigen-presenting cells from RA patients, potentially affecting their ability to stimulate the immune adaptive response at different levels, by hampering their migration to the lymph node and the production of proinflammatory cytokines and chemokines. Accordingly, MSC-based therapies can be a valuable approach for RA treatment, especially for non-responder patients.

2.
J Tissue Eng Regen Med ; 14(1): 16-28, 2020 01.
Article in English | MEDLINE | ID: mdl-31502378

ABSTRACT

Rheumatoid arthritis (RA) is a Th1/Th17-mediated autoimmune disease whose current treatment, consisting in the blockage of inflammatory cytokines by disease-modifying antirheumatic drugs, is not effective for all patients. The therapeutic potential of mesenchymal stromal/stem cells' (MSCs) immunomodulatory properties is being explored in RA. Here, we investigate the effect of human bone marrow (BM)-MSCs on the expression of cytokines involved in RA physiopathology by the distinct functional compartments of CD4+ and CD8+ T cells from RA patients. Peripheral blood mononuclear cells from healthy individuals (n = 6) and RA patients (n = 12) were stimulated with phorbol myristate acetate plus ionomycin and cultured in the presence/absence of BM-MSCs. The expression of (interleukin) IL-2, tumor necrosis factor alpha (TNF-α), and interferon-gamma (IFN-γ) was evaluated in naive, central memory, effector memory, and effector CD4+ and CD8+ T cells, whereas IL-6, IL-9, and IL-17 expression was measured in total CD4+ and CD8+ T cells. mRNA expression of IL-4, IL-10, transforming growth factor beta (TGF-ß), cytotoxic T-lymphocyte-associated antigen 4, and/or forkhead box P3 was quantified in fluorescence-activated cell sorting-purified CD4+ T cells, CD8+ T cells, and CD4+ Treg. BM-MSCs inhibited the production of TNF-α, IL-17, IL-6, IL-2, IFN-γ, and IL-9 by T cells from RA patients, mainly by reducing the percentage of cells producing cytokines. This inhibitory effect was transversal to all T cell subsets analyzed. At mRNA level, BM-MSCs increased expression of IL-10 and TGF-ß by CD4+ and CD8+ T cells. BM-MSCs displayed a striking inhibitory action over T cells from RA patients, reducing the expression of cytokines involved in RA physiopathology. Remarkably, BM-MSC-derived immunomodulation affected either naive, effector, and memory T cells.


Subject(s)
Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/therapy , Bone Marrow Cells/cytology , Mesenchymal Stem Cells/cytology , T-Lymphocytes/cytology , Adult , Aged , Arthritis, Rheumatoid/immunology , Bone Marrow/pathology , CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , Cell Proliferation , Cytokines/metabolism , Female , Humans , Immunomodulation/immunology , Immunophenotyping , Immunosuppression Therapy , Immunosuppressive Agents/therapeutic use , Male , Middle Aged
3.
Stem Cells Int ; 2015: 819084, 2015.
Article in English | MEDLINE | ID: mdl-26060498

ABSTRACT

The immunosuppressive properties of mesenchymal stromal/stem cells (MSC) rendered them an attractive therapeutic approach for immune disorders and an increasing body of evidence demonstrated their clinical value. However, the influence of MSC on the function of specific immune cell populations, namely, monocyte subpopulations, is not well elucidated. Here, we investigated the influence of human bone marrow MSC on the cytokine and chemokine expression by peripheral blood classical, intermediate and nonclassical monocytes, and myeloid dendritic cells (mDC), stimulated with lipopolysaccharide plus interferon (IFN)γ. We found that MSC effectively inhibit tumor necrosis factor- (TNF-) α and macrophage inflammatory protein- (MIP-) 1ß protein expression in monocytes and mDC, without suppressing CCR7 and CD83 protein expression. Interestingly, mDC exhibited the highest degree of inhibition, for both TNF-α and MIP-1ß, whereas the reduction of TNF-α expression was less marked for nonclassical monocytes. Similarly, MSC decreased mRNA levels of interleukin- (IL-) 1ß and IL-6 in classical monocytes, CCL3, CCL5, CXCL9, and CXCL10 in classical and nonclassical monocytes, and IL-1ß and CXCL10 in mDC. MSC do not impair the expression of maturation markers in monocytes and mDC under our experimental conditions; nevertheless, they hamper the proinflammatory function of monocytes and mDC, which may impede the development of inflammatory immune responses.

4.
Stem Cell Res Ther ; 6: 3, 2015 Jan 05.
Article in English | MEDLINE | ID: mdl-25559824

ABSTRACT

INTRODUCTION: The different distribution of T cells among activation/differentiation stages in immune disorders may condition the outcome of mesenchymal stromal cell (MSC)-based therapies. Indeed, the effect of MSCs in the different functional compartments of T cells is not completely elucidated. METHODS: We investigated the effect of human bone marrow MSCs on naturally occurring peripheral blood functional compartments of CD4(+) and CD8(+) T cells: naive, central memory, effector memory, and effector compartments. For that, mononuclear cells (MNCs) stimulated with phorbol myristate acetate (PMA) plus ionomycin were cultured in the absence/presence of MSCs. The percentage of cells expressing tumor necrosis factor-alpha (TNF-α), interferon gamma (IFNγ), and interleukin-2 (IL-2), IL-17, IL-9, and IL-6 and the amount of cytokine produced were assessed by flow cytometry. mRNA levels of IL-4, IL-10, transforming growth factor-beta (TGF-ß), and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) in purified CD4(+) and CD8(+) T cells, and phenotypic and mRNA expression changes induced by PMA + ionomycin stimulation in MSCs, were also evaluated. RESULTS: MSCs induced the reduction of the percentage of CD4(+) and CD8(+) T cells producing TNF-α, IFNγ, and IL-2 in all functional compartments, except for naive IFNγ(+)CD4(+) T cells. This inhibitory effect differentially affected CD4(+) and CD8(+) T cells as well as the T-cell functional compartments; remarkably, different cytokines showed distinct patterns of inhibition regarding both the percentage of producing cells and the amount of cytokine produced. Likewise, the percentages of IL-17(+), IL-17(+)TNF-α(+), and IL-9(+) within CD4(+) and CD8(+) T cells and of IL-6(+)CD4(+) T cells were decreased in MNC-MSC co-cultures. MSCs decreased IL-10 and increased IL-4 mRNA expression in stimulated CD4(+) and CD8(+) T cells, whereas TGF-ß was reduced in CD8(+) and augmented in CD4(+) T cells, with no changes for CTLA4. Finally, PMA + ionomycin stimulation did not induce significant alterations on MSCs phenotype but did increase indoleamine-2,3-dioxygenase (IDO), inducible costimulatory ligand (ICOSL), IL-1ß, IL-8, and TNF-α mRNA expression. CONCLUSIONS: Overall, our study showed that MSCs differentially regulate the functional compartments of CD4(+) and CD8(+) T cells, which may differentially impact their therapeutic effect in immune disorders. Furthermore, the influence of MSCs on IL-9 expression can open new possibilities for MSC-based therapy in allergic diseases.


Subject(s)
Bone Marrow Cells/cytology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cytokines/metabolism , Mesenchymal Stem Cells/metabolism , Adult , CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , Coculture Techniques , Cytokines/genetics , Female , Humans , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-2/genetics , Interleukin-2/metabolism , Ionomycin/pharmacology , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Lymphocyte Activation/drug effects , Male , Mesenchymal Stem Cells/cytology , Middle Aged , RNA, Messenger/metabolism , Tetradecanoylphorbol Acetate/pharmacology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...