Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 35(1)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37703845

ABSTRACT

Scanning transmission electron microscopy is a common tool used to study the atomic structure of materials. It is an inherently multimodal tool allowing for the simultaneous acquisition of multiple information channels. Despite its versatility, however, experimental workflows currently rely heavily on experienced human operators and can only acquire data from small regions of a sample at a time. Here, we demonstrate a flexible pipeline-based system for high-throughput acquisition of atomic-resolution structural data using an all-piezo sample stage applied to large-scale imaging of nanoparticles and multimodal data acquisition. The system is available as part of the user program of the Molecular Foundry at Lawrence Berkeley National Laboratory.

2.
Nature ; 618(7967): 951-958, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37258675

ABSTRACT

Materials whose luminescence can be switched by optical stimulation drive technologies ranging from superresolution imaging1-4, nanophotonics5, and optical data storage6,7, to targeted pharmacology, optogenetics, and chemical reactivity8. These photoswitchable probes, including organic fluorophores and proteins, can be prone to photodegradation and often operate in the ultraviolet or visible spectral regions. Colloidal inorganic nanoparticles6,9 can offer improved stability, but the ability to switch emission bidirectionally, particularly with near-infrared (NIR) light, has not, to our knowledge, been reported in such systems. Here, we present two-way, NIR photoswitching of avalanching nanoparticles (ANPs), showing full optical control of upconverted emission using phototriggers in the NIR-I and NIR-II spectral regions useful for subsurface imaging. Employing single-step photodarkening10-13 and photobrightening12,14-16, we demonstrate indefinite photoswitching of individual nanoparticles (more than 1,000 cycles over 7 h) in ambient or aqueous conditions without measurable photodegradation. Critical steps of the photoswitching mechanism are elucidated by modelling and by measuring the photon avalanche properties of single ANPs in both bright and dark states. Unlimited, reversible photoswitching of ANPs enables indefinitely rewritable two-dimensional and three-dimensional multilevel optical patterning of ANPs, as well as optical nanoscopy with sub-Å localization superresolution that allows us to distinguish individual ANPs within tightly packed clusters.

3.
Mol Imaging Biol ; 25(1): 168-179, 2023 02.
Article in English | MEDLINE | ID: mdl-35312938

ABSTRACT

PURPOSE: Intraoperative detection and removal of microscopic residual disease (MRD) remain critical to the outcome of cancer surgeries. Today's minimally invasive surgical procedures require miniaturization and surgical integration of highly sensitive imagers to seamlessly integrate into the modern clinical workflow. However, current intraoperative imagers remain cumbersome and still heavily dependent on large lenses and rigid filters, precluding further miniaturization and integration into surgical tools. PROCEDURES: We have successfully engineered a chip-scale intraoperative micro-imager array-without optical filters or lenses-integrated with lanthanide-based alloyed upconverting nanoparticles (aUCNPs) to achieve tissue imaging using a single micro-chip. This imaging platform is able to leverage the unique optical properties of aUCNPs (long luminescent lifetime, high-efficiency upconversion, no photobleaching) by utilizing a time-resolved imaging method to acquire images using a 36-by-80-pixel, 2.3 mm [Formula: see text] 4.8 mm silicon-based electronic imager micro-chip, that is, less than 100-µm thin. Each pixel incorporates a novel architecture enabling automated background measurement and cancellation. We have validated the performance, spatial resolution, and the background cancellation scheme of the imaging platform, using resolution test targets and mouse prostate tumor sample intratumorally injected with aUCNPs. To demonstrate the ability to image MRD, or tumor margins, we evaluated the imaging platform in visualizing a single-cell thin section of the injected prostate tumor sample. RESULTS: Tested on USAF resolution targets, the imager is able to achieve a resolution of 71 µm. We have also demonstrated successful background cancellation, achieving a signal-to-background ratio of 8 when performing ex vivo imaging on aUCNP-injected prostate tumor sample, improved from originally 0.4. The performance of the imaging platform on single-cell layer sections was also evaluated and the sensor achieved a signal-to-background ratio of 4.3 in resolving cell clusters with sizes as low as 200 cells. CONCLUSION: The imaging system proposed here is a scalable chip-scale ultra-thin alternative for bulky conventional intraoperative imagers. Its novel pixel architecture and background correction scheme enable visualization of microscopic-scale residual disease while remaining completely free of lenses and filters, achieving an ultra-miniaturized form factor-critical for intraoperative settings.


Subject(s)
Nanoparticles , Prostatic Neoplasms , Male , Animals , Mice , Humans , Diagnostic Imaging , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/surgery
4.
IEEE Trans Biomed Circuits Syst ; 16(2): 312-323, 2022 04.
Article in English | MEDLINE | ID: mdl-35385388

ABSTRACT

We present an optics-free CMOS image sensor that incorporates a novel time-gated dual-photodiode pixel design to allow filter- and lens-less image acquisition of near-infrared-excited (NIR-excited) upconverting nanoparticles. Recent biomedical advances have highlighted the benefits of NIR excitation, but NIR interaction with silicon has remained a challenge, even with high-performance optical blocking filters. Using a secondary diode and a dual-photodiode design, this sensor is able to remove the 100s of mV of NIR background on pixels and bring it down to single-digit mV level, nearing its noise floor of 2.2 mV rms, not achievable with any optical filter. Non-linear effects of background cancellation using the diode pair has been mitigated using an initial one-time pixel-level curve fitting and calibration in a post-processing setting. This imager comprises a highly linear 11 fF metal-oxide-metal (MOM) capacitor and includes integrated angle-selective gratings to reject oblique light and enhance sharpness. Each pixel also includes two distinct correlated double sampling schemes, to remove low frequency flicker noise and systematic offset in the datapath. We demonstrate the performance of this imager using pulsed NIR-excited upconverting nanoparticles on standard United-States-Air-Force (USAF) resolution targets and achieve an SNR of 15 dB, while keeping NIR background below 6 mV. This 36-by-80-pixel array measures only 2.3 mm by 4.8 mm and can be thinned down to 25 µm, allowing it to become surgically compatible with intraoperative instruments and equipment, while remaining optics-free.


Subject(s)
Nanoparticles , Optics and Photonics , Diagnostic Imaging , Equipment Design , Silicon
5.
ACS Nano ; 15(11): 18374-18384, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34694776

ABSTRACT

Inorganic nanocrystals such as quantum dots (QDs) and upconverting nanoparticles (UCNPs) are uniquely suited for quantitative live-cell imaging and are typically functionalized with ligands to study specific receptors or cellular targets. Antibodies (Ab) are among the most useful targeting reagents owing to their high affinities and specificities, but common nanocrystal labeling methods may orient Ab incorrectly, be reversible or denaturing, or lead to Ab-NP complexes too large for some applications. Here, we show that SpyCatcher proteins, which bind and spontaneously form covalent isopeptide bonds with cognate SpyTag peptides, can conjugate engineered Ab to nanoparticle surfaces with control over stability, orientation, and stoichiometry. Compact SpyCatcher-functionalized QDs and UCNPs may be labeled with short-chain variable fragment Ab (scFv) engineered to bind urokinase-type plasminogen activator receptors (uPAR) that are overexpressed in many human cancers. Confocal imaging of anti-uPAR scFv-QD conjugates shows the antibody mediates specific binding and internalization by breast cancer cells expressing uPAR. Time-lapse imaging of photostable scFv-UCNP conjugates shows that Ab binding causes uPAR internalization with a ∼20 min half-life on the cell surface, and uPAR is internalized to endolysosomal compartments distinct from general membrane stains and without significant recycling to the cell surface. The controlled and stable conjugation of engineered Ab to NPs enables targeting of diverse receptors for live-cell study of their distribution, trafficking, and physiology.


Subject(s)
Nanoparticles , Quantum Dots , Humans , Receptors, Urokinase Plasminogen Activator/metabolism , Antibodies/metabolism , Cell Membrane/metabolism , Urokinase-Type Plasminogen Activator/metabolism
6.
Chem Commun (Camb) ; 57(37): 4528-4531, 2021 May 06.
Article in English | MEDLINE | ID: mdl-33956029

ABSTRACT

We describe a low molecular weight covalent inhibitor targeting a conserved lysine residue within the hydrophobic pocket of HIV-1 glycoprotein-41. The inhibitor bound selectively to the hydrophobic pocket and exhibited an order of magnitude enhancement of anti-fusion activity against HIV-1 compared to its non-covalent counterpart. The findings represent a significant advance in the quest to obtain non-peptide fusion inhibitors.


Subject(s)
Anti-HIV Agents/pharmacology , HIV Envelope Protein gp41/antagonists & inhibitors , HIV Fusion Inhibitors/pharmacology , HIV/drug effects , Small Molecule Libraries/pharmacology , Sulfuric Acid Esters/pharmacology , Anti-HIV Agents/chemistry , HIV/metabolism , HIV Envelope Protein gp41/metabolism , HIV Fusion Inhibitors/chemistry , Hydrophobic and Hydrophilic Interactions , Microbial Sensitivity Tests , Molecular Structure , Molecular Weight , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Sulfuric Acid Esters/chemistry
7.
Chemphyschem ; 20(15): 1931-1940, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31231943

ABSTRACT

The odd-even effect in luminescent [Eu2 (L)3 (H2 O)x ]⋅y(H2 O) complexes with aliphatic dicarboxylate ligands (L: OXA, MAL, SUC, GLU, ADP, PIM, SUB, AZL, SEB, UND, and DOD, where x=2-6 and y=0-4), prepared by the precipitation method, was observed for the first time in lanthanide compounds. The final dehydration temperatures of the Eu3+ complexes show a zigzag pattern as a function of the carbon chain length of the dicarboxylate ligands, leading to the so-called odd-even effect. The FTIR data confirm the ligand-metal coordination via the mixed mode of bridge-chelate coordination, except for the Eu3+ -oxalate complex. XRD results indicate that the highly crystalline materials belong to the monoclinic system. The odd-even effect on the 4 f-4 f luminescence intensity parameters (Ω2 and Ω4 ) is explained by using an extension of the dynamic coupling mechanism, herein named the ghost-atom model. In this method, the long-range polarizabilities ( α* ) were simulated by a ghost atom located at the middle of each ligand chain. The values of α* were estimated using the localized molecular orbital approach. The emission intrinsic quantum yield ( QLnLn ) of the Eu3+ complexes also presented an the odd-even effect, successfully explained in terms of the zigzag behavior shown by the Ω2 and Ω4 intensity parameters. Luminescence quenching due to water molecules in the first coordination sphere is also discussed and rationalized.

8.
ACS Appl Mater Interfaces ; 8(30): 19593-604, 2016 Aug 03.
Article in English | MEDLINE | ID: mdl-27387602

ABSTRACT

Persistent luminescence materials Lu2O3:R(3+),M (Pr,Hf(IV); Eu; or Tb,Ca(2+)) were successfully and rapidly (22 min) prepared by microwave-assisted solid-state synthesis (MASS) using a carbon microwave susceptor and H3BO3 as flux. Reaction times are reduced by up to 93% over previous synthetic methods, without special gases application and using a domestic microwave oven. All materials prepared with H3BO3 flux exhibit LuBO3 impurities that were quantified by Rietveld refinement from synchrotron radiation X-ray powder diffraction patterns. The flux does not considerably affect the crystalline structure of the C-Lu2O3, however. Scanning electron micrographs suggest low surface area when H3BO3 flux is used in the materials' synthesis, decreasing the amount of surface hydroxyl groups in Lu2O3 and improving the luminescence intensity of the phosphors. The carbon used as the susceptor generates CO gas, leading to complete reduction of Tb(IV) to Tb(3+) and partial conversion of Pr(IV) to Pr(3+) present in the Tb4O7 and Pr6O11 precursors, as indicated by X-ray absorption near-edge structure data. Persistent luminescence spectra of the materials show the red/near-IR, reddish orange, and green emission colors assigned to the 4f(n) → 4f(n) transitions characteristics of Pr(3+), Eu(3+), and Tb(3+) ions, respectively. Differences between the UV-excited and persistent luminescence spectra can be explained by the preferential persistent luminescence emission of R(3+) ion in the S6 site rather than R(3+) in the C2 site. In addition, inclusion of Hf(IV) and Ca(2+) codopants in the Lu2O3 host increases the emission intensity and duration of persistent luminescence due to generation of traps caused by charge compensation in the lattice. Photonic materials prepared by MASS with H3BO3 flux show higher persistent luminescence performance than those prepared by the ceramic method or MASS without flux. Color tuning of persistent luminescence in Lu2O3:R(3+),M provides potential applications in bioimaging as well as in solar cell sensitizers.

SELECTION OF CITATIONS
SEARCH DETAIL
...