Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 135(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38744659

ABSTRACT

AIM: This study investigated the effectiveness of a drug-modified tissue conditioner in an animal model of denture stomatitis. METHODS AND RESULTS: Wistar rats wore a Candida albicans-contaminated palatal device for 4 days. Next, nystatin (Nys) or chlorhexidine (Chx) were added to a tissue conditioner in their raw or ß-cyclodextrin-complexed (ßCD) forms at their minimum inhibitory concentrations. As controls, one group was not subjected to any procedure (NC), one group used sterile devices, one group had denture stomatitis but was not treated (DS), and another had the devices relined with the tissue conditioner without the addition of any drug (Soft). After 4 days of treatment, treatment effectiveness was assessed visually, histologically, and through CFU count, and myeloperoxidase (MPO) and N-acetylglucosaminidase (NAG) assays. Rats from the Soft, Nys, Nys:ßCD, and Chx groups presented a significant decrease in the microbial load compared with the untreated group. Treatment groups showed lower MPO and NAG activity compared to the non-treated group. CONCLUSIONS: The addition of antifungals to a soft tissue conditioner can be a promising approach for denture stomatitis treatment.


Subject(s)
Antifungal Agents , Candida albicans , Chlorhexidine , Nystatin , Rats, Wistar , Stomatitis, Denture , Animals , Stomatitis, Denture/microbiology , Stomatitis, Denture/drug therapy , Rats , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Nystatin/pharmacology , Nystatin/therapeutic use , Chlorhexidine/pharmacology , Candida albicans/drug effects , Disease Models, Animal , Male , Colony Count, Microbial , Microbial Sensitivity Tests , Candidiasis, Oral/drug therapy , Candidiasis, Oral/microbiology , Peroxidase/metabolism , Acetylglucosaminidase/metabolism , beta-Cyclodextrins
2.
J Appl Toxicol ; 44(5): 747-755, 2024 05.
Article in English | MEDLINE | ID: mdl-38198744

ABSTRACT

The emergence of resistant fungal species and the toxicity of currently available antifungal drugs are relevant issues that require special consideration. Cyclodextrins inclusion complexes could optimize the antimicrobial activity of such drugs and create a controlled release system with few side effects. This study aimed to assess the in vitro toxicity and antifungal effectiveness of nystatin (Nys) and chlorhexidine (Chx) complexed or not with ß-cyclodextrin (ßCD). First, a drug toxicity screening was performed through the Artemia salina bioassay. Then, the minimum inhibitory concentrations (MICs) against Candida albicans were determined with the broth microdilution test. After MICs determination, the cytotoxicity of the drugs was evaluated through the methyl-thiazolyl-tetrazolium (MTT) and neutral red (NR) assays and through cell morphology analysis. The PROBIT analysis was used to determine the median lethal concentration (LC50), and the cell viability values were submitted to one-way analysis of variance(ANOVA)/Tukey (α = 0.05). Overall, the ßCD-complexed antifungals were less toxic against A. salina than their raw forms, suggesting that inclusion complexes can reduce the toxicity of drugs. The MICs obtained were as follows: Nys 0.5 mg/L; Nys:ßCD 4 mg/L; Chx 4 mg/L; and Chx:ßCD 8 mg/L. Chx showed significant cytotoxicity (MTT: 12.9 ± 9.6%; NR: 10.6 ± 12.5%) and promoted important morphological changes. Cells exposed to the other drugs showed viability above 70% with no cellular damage. These results suggest that antifungals complexed with ßCD might be a biocompatible option for the treatment of Candida-related infections.


Subject(s)
Antifungal Agents , beta-Cyclodextrins , Antifungal Agents/toxicity , Candida , Nystatin/toxicity , Candida albicans , Chlorhexidine/pharmacology , beta-Cyclodextrins/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...