Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell ; 34(1): 616-632, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34755865

ABSTRACT

The onset of plant life is characterized by a major phase transition. During early heterotrophic seedling establishment, seed storage reserves fuel metabolic demands, allowing the plant to switch to autotrophic metabolism. Although metabolic pathways leading to storage compound mobilization are well-described, the regulatory circuits remain largely unresolved. Using an inducible knockdown approach of the evolutionarily conserved energy master regulator Snf1-RELATED-PROTEIN-KINASE1 (SnRK1), phenotypic studies reveal its crucial function in Arabidopsis thaliana seedling establishment. Importantly, glucose feeding largely restores growth defects of the kinase mutant, supporting its major impact in resource mobilization. Detailed metabolite studies reveal sucrose as a primary resource early in seedling establishment, in a SnRK1-independent manner. Later, SnRK1 orchestrates catabolism of triacylglycerols and amino acids. Concurrent transcriptomic studies highlight SnRK1 functions in controlling metabolic hubs fuelling gluconeogenesis, as exemplified by cytosolic PYRUVATE ORTHOPHOSPHATE DIKINASE (cyPPDK). Here, SnRK1 establishes its function via phosphorylation of the transcription factor BASIC LEUCINE ZIPPER63 (bZIP63), which directly targets and activates the cyPPDK promoter. Taken together, our results disclose developmental and catabolic functions of SnRK1 in seed storage mobilization and describe a prototypic gene regulatory mechanism. As seedling establishment is important for plant vigor and crop yield, our findings are of agronomical importance.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/growth & development , Seedlings/genetics , Transcription Factors/genetics , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Seedlings/growth & development , Transcription Factors/metabolism
2.
Plant Cell ; 30(2): 495-509, 2018 02.
Article in English | MEDLINE | ID: mdl-29348240

ABSTRACT

Sustaining energy homeostasis is of pivotal importance for all living organisms. In Arabidopsis thaliana, evolutionarily conserved SnRK1 kinases (Snf1-RELATED KINASE1) control metabolic adaptation during low energy stress. To unravel starvation-induced transcriptional mechanisms, we performed transcriptome studies of inducible knockdown lines and found that S1-basic leucine zipper transcription factors (S1-bZIPs) control a defined subset of genes downstream of SnRK1. For example, S1-bZIPs coordinate the expression of genes involved in branched-chain amino acid catabolism, which constitutes an alternative mitochondrial respiratory pathway that is crucial for plant survival during starvation. Molecular analyses defined S1-bZIPs as SnRK1-dependent regulators that directly control transcription via binding to G-box promoter elements. Moreover, SnRK1 triggers phosphorylation of group C-bZIPs and the formation of C/S1-heterodimers and, thus, the recruitment of SnRK1 directly to target promoters. Subsequently, the C/S1-bZIP-SnRK1 complex interacts with the histone acetylation machinery to remodel chromatin and facilitate transcription. Taken together, this work reveals molecular mechanisms underlying how energy deprivation is transduced to reprogram gene expression, leading to metabolic adaptation upon stress.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Metabolic Networks and Pathways , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Adaptation, Physiological , Arabidopsis/enzymology , Arabidopsis/physiology , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Darkness , Energy Metabolism , Gene Expression Profiling , Homeostasis , Mitochondria/metabolism , Phosphorylation , Promoter Regions, Genetic/genetics , Protein Serine-Threonine Kinases/genetics
3.
PLoS Genet ; 13(2): e1006607, 2017 02.
Article in English | MEDLINE | ID: mdl-28158182

ABSTRACT

Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants' low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant's energy status into root meristem control, thereby balancing plant growth and cellular energy resources.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Nuclear Proteins/genetics , Plant Roots/genetics , Protein Serine-Threonine Kinases/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/biosynthesis , Basic-Leucine Zipper Transcription Factors/biosynthesis , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Membrane Transport Proteins/genetics , Meristem/genetics , Meristem/growth & development , Nuclear Proteins/biosynthesis , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Roots/growth & development , Signal Transduction
4.
Sci Rep ; 6: 31697, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27545962

ABSTRACT

Since years, research on SnRK1, the major cellular energy sensor in plants, has tried to define its role in energy signalling. However, these attempts were notoriously hampered by the lethality of a complete knockout of SnRK1. Therefore, we generated an inducible amiRNA::SnRK1α2 in a snrk1α1 knock out background (snrk1α1/α2) to abolish SnRK1 activity to understand major systemic functions of SnRK1 signalling under energy deprivation triggered by extended night treatment. We analysed the in vivo phosphoproteome, proteome and metabolome and found that activation of SnRK1 is essential for repression of high energy demanding cell processes such as protein synthesis. The most abundant effect was the constitutively high phosphorylation of ribosomal protein S6 (RPS6) in the snrk1α1/α2 mutant. RPS6 is a major target of TOR signalling and its phosphorylation correlates with translation. Further evidence for an antagonistic SnRK1 and TOR crosstalk comparable to the animal system was demonstrated by the in vivo interaction of SnRK1α1 and RAPTOR1B in the cytosol and by phosphorylation of RAPTOR1B by SnRK1α1 in kinase assays. Moreover, changed levels of phosphorylation states of several chloroplastic proteins in the snrk1α1/α2 mutant indicated an unexpected link to regulation of photosynthesis, the main energy source in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Energy Metabolism/physiology , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Proteomics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Phosphoproteins/genetics , Phosphorylation/physiology , Protein Serine-Threonine Kinases/genetics
5.
Elife ; 42015 Aug 11.
Article in English | MEDLINE | ID: mdl-26263501

ABSTRACT

Metabolic adjustment to changing environmental conditions, particularly balancing of growth and defense responses, is crucial for all organisms to survive. The evolutionary conserved AMPK/Snf1/SnRK1 kinases are well-known metabolic master regulators in the low-energy response in animals, yeast and plants. They act at two different levels: by modulating the activity of key metabolic enzymes, and by massive transcriptional reprogramming. While the first part is well established, the latter function is only partially understood in animals and not at all in plants. Here we identified the Arabidopsis transcription factor bZIP63 as key regulator of the starvation response and direct target of the SnRK1 kinase. Phosphorylation of bZIP63 by SnRK1 changed its dimerization preference, thereby affecting target gene expression and ultimately primary metabolism. A bzip63 knock-out mutant exhibited starvation-related phenotypes, which could be functionally complemented by wild type bZIP63, but not by a version harboring point mutations in the identified SnRK1 target sites.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant , Protein Multimerization , Protein Serine-Threonine Kinases/metabolism , Adaptation, Physiological , Arabidopsis/metabolism , Basic-Leucine Zipper Transcription Factors/deficiency , Gene Knockout Techniques , Genetic Complementation Test , Phosphorylation , Protein Processing, Post-Translational
6.
Plant Cell ; 27(8): 2244-60, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26276836

ABSTRACT

Soil salinity increasingly causes crop losses worldwide. Although roots are the primary targets of salt stress, the signaling networks that facilitate metabolic reprogramming to induce stress tolerance are less understood than those in leaves. Here, a combination of transcriptomic and metabolic approaches was performed in salt-treated Arabidopsis thaliana roots, which revealed that the group S1 basic leucine zipper transcription factors bZIP1 and bZIP53 reprogram primary C- and N-metabolism. In particular, gluconeogenesis and amino acid catabolism are affected by these transcription factors. Importantly, bZIP1 expression reflects cellular stress and energy status in roots. In addition to the well-described abiotic stress response pathway initiated by the hormone abscisic acid (ABA) and executed by SnRK2 (Snf1-RELATED-PROTEIN-KINASE2) and AREB-like bZIP factors, we identify a structurally related ABA-independent signaling module consisting of SnRK1s and S1 bZIPs. Crosstalk between these signaling pathways recruits particular bZIP factor combinations to establish at least four distinct gene expression patterns. Understanding this signaling network provides a framework for securing future crop productivity.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Signal Transduction/genetics , Abscisic Acid/pharmacology , Amino Acids/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Calcium/metabolism , Carbohydrate Metabolism/drug effects , Carbohydrate Metabolism/genetics , Gene Expression Regulation, Plant/drug effects , Gluconeogenesis/drug effects , Gluconeogenesis/genetics , Immunoblotting , Mutation , Plant Growth Regulators/pharmacology , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Protein Serine-Threonine Kinases , Reverse Transcriptase Polymerase Chain Reaction , Salt-Tolerant Plants/drug effects , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Signal Transduction/drug effects , Sodium Chloride/pharmacology , Transcriptome/drug effects , Transcriptome/genetics
7.
Front Plant Sci ; 5: 353, 2014.
Article in English | MEDLINE | ID: mdl-25101105

ABSTRACT

Stress impacts negatively on plant growth and crop productivity, caicultural production worldwide. Throughout their life, plants are often confronted with multiple types of stress that affect overall cellular energy status and activate energy-saving responses. The resulting low energy syndrome (LES) includes transcriptional, translational, and metabolic reprogramming and is essential for stress adaptation. The conserved kinases sucrose-non-fermenting-1-related protein kinase-1 (SnRK1) and target of rapamycin (TOR) play central roles in the regulation of LES in response to stress conditions, affecting cellular processes and leading to growth arrest and metabolic reprogramming. We review the current understanding of how TOR and SnRK1 are involved in regulating the response of plants to low energy conditions. The central role in the regulation of cellular processes, the reprogramming of metabolism, and the phenotypic consequences of these two kinases will be discussed in light of current knowledge and potential future developments.

8.
PLoS One ; 8(7): e69352, 2013.
Article in English | MEDLINE | ID: mdl-23922705

ABSTRACT

Piriformosporaindica is a basidiomycete fungus colonizing roots of a wide range of higher plants, including crop plants and the model plant Arabidopsis thaliana. Previous studies have shown that P. indica improves growth, and enhances systemic pathogen resistance in leaves of host plants. To investigate systemic effects within the root system, we established a hydroponic split-root cultivation system for Arabidopsis. Using quantitative real-time PCR, we show that initial P. indica colonization triggers a local, transient response of several defense-related transcripts, of which some were also induced in shoots and in distal, non-colonized roots of the same plant. Systemic effects on distal roots included the inhibition of secondary P. indica colonization. Faster and stronger induction of defense-related transcripts during secondary inoculation revealed that a P. indica pretreatment triggers root-wide priming of defense responses, which could cause the observed reduction of secondary colonization levels. Secondary P. indica colonization also induced defense responses in distant, already colonized parts of the root. Endophytic fungi therefore trigger a spatially specific response in directly colonized and in systemic root tissues of host plants.


Subject(s)
Arabidopsis/microbiology , Basidiomycota/physiology , Plant Roots/microbiology , Arabidopsis/genetics , Arabidopsis/growth & development , Basidiomycota/cytology , Basidiomycota/growth & development , Colony Count, Microbial , Gene Expression Regulation, Plant , Hydroponics , Plant Roots/cytology , Plant Roots/genetics , Plant Roots/growth & development
9.
FEMS Microbiol Ecol ; 86(3): 505-19, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23829709

ABSTRACT

Understanding how temperature and water stress affect protocooperation between plants and beneficial rhizobacteria may enhance the efficacy of biocontrol agents in reducing plant diseases. However, little is known about the impact of these factors on biocontrol mechanisms and effectiveness, especially when provided by beneficial Bacillus spp. This work aimed to evaluate the influence of low/high temperature combined with a normal and reduced water regime on the interaction between Bacillus amyloliquefaciens strain S499 and plants, resulting in the induction of systemic resistance (ISR). A reduction in ISR level was observed when plants were subjected to stress before bacterization; however, root treatment with S499 prior to stress exposure attenuated this negative effect. Colonization of S499 during exposure to temperature/water stress allowed the three crops to conserve their overall ability to mount defense lines to a similar degree at all the temperatures tested. Further investigation revealed that relative production of surfactin by S499 was clearly enhanced at low temperature, making it possible to counter-balance the negative effect on traits associated with rhizosphere fitness (colonization, motility, and biofilm formation) observed in vitro in cold conditions. This work thus represents a first step in deciphering the effect of high/low temperatures and/or drought on key plant-microorganism interactions culminating in ISR.


Subject(s)
Bacillus/physiology , Fabaceae/microbiology , Plant Diseases/immunology , Solanum lycopersicum/microbiology , Bacillus/growth & development , Biofilms , Disease Resistance , Droughts , Fabaceae/immunology , Immunity, Innate , Solanum lycopersicum/immunology , Plant Diseases/microbiology , Plant Roots/microbiology , Rhizosphere , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...