Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Cancers (Basel) ; 16(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38339316

ABSTRACT

For over a century, early researchers sought to study biological organisms in a laboratory setting, leading to the generation of both in vitro and in vivo model systems. Patient-derived models of cancer (PDMCs) have more recently come to the forefront of preclinical cancer models and are even finding their way into clinical practice as part of functional precision medicine programs. The PDMC Consortium, supported by the Division of Cancer Biology in the National Cancer Institute of the National Institutes of Health, seeks to understand the biological principles that govern the various PDMC behaviors, particularly in response to perturbagens, such as cancer therapeutics. Based on collective experience from the consortium groups, we provide insight regarding PDMCs established both in vitro and in vivo, with a focus on practical matters related to developing and maintaining key cancer models through a series of vignettes. Although every model has the potential to offer valuable insights, the choice of the right model should be guided by the research question. However, recognizing the inherent constraints in each model is crucial. Our objective here is to delineate the strengths and limitations of each model as established by individual vignettes. Further advances in PDMCs and the development of novel model systems will enable us to better understand human biology and improve the study of human pathology in the lab.

2.
Tomography ; 9(2): 657-680, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36961012

ABSTRACT

The availability of high-fidelity animal models for oncology research has grown enormously in recent years, enabling preclinical studies relevant to prevention, diagnosis, and treatment of cancer to be undertaken. This has led to increased opportunities to conduct co-clinical trials, which are studies on patients that are carried out parallel to or sequentially with animal models of cancer that mirror the biology of the patients' tumors. Patient-derived xenografts (PDX) and genetically engineered mouse models (GEMM) are considered to be the models that best represent human disease and have high translational value. Notably, one element of co-clinical trials that still needs significant optimization is quantitative imaging. The National Cancer Institute has organized a Co-Clinical Imaging Resource Program (CIRP) network to establish best practices for co-clinical imaging and to optimize translational quantitative imaging methodologies. This overview describes the ten co-clinical trials of investigators from eleven institutions who are currently supported by the CIRP initiative and are members of the Animal Models and Co-clinical Trials (AMCT) Working Group. Each team describes their corresponding clinical trial, type of cancer targeted, rationale for choice of animal models, therapy, and imaging modalities. The strengths and weaknesses of the co-clinical trial design and the challenges encountered are considered. The rich research resources generated by the members of the AMCT Working Group will benefit the broad research community and improve the quality and translational impact of imaging in co-clinical trials.


Subject(s)
Neoplasms , Animals , Mice , Humans , Neoplasms/diagnostic imaging , Neoplasms/therapy , Neoplasms/pathology , Disease Models, Animal , Diagnostic Imaging
3.
Metabolites ; 12(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36422257

ABSTRACT

Patient-derived xenografts (PDX) are high-fidelity cancer models typically credentialled by genomics, transcriptomics and proteomics. Characterization of metabolic reprogramming, a hallmark of cancer, is less frequent. Dysregulated metabolism is a key feature of clear cell renal cell carcinoma (ccRCC) and authentic preclinical models are needed to evaluate novel imaging and therapeutic approaches targeting metabolism. We characterized 5 PDX from high-grade or metastatic ccRCC by multiparametric magnetic resonance imaging (MRI) and steady state metabolic profiling and flux analysis. Similar to MRI of clinical ccRCC, T2-weighted images of orthotopic tumors of most PDX were homogeneous. The increased hyperintense (cystic) areas observed in one PDX mimicked the cystic phenotype typical of some RCC. The negligible hypointense (necrotic) areas of PDX grown under the highly vascularized renal capsule are beneficial for preclinical studies. Mean apparent diffusion coefficient (ADC) values were equivalent to those of ccRCC in human patients. Hyperpolarized (HP) [1-13C]pyruvate MRI of PDX showed high glycolytic activity typical of high-grade primary and metastatic ccRCC with considerable intra- and inter-tumoral variability, as has been observed in clinical HP MRI of ccRCC. Comparison of steady state metabolite concentrations and metabolic flux in [U-13C]glucose-labeled tumors highlighted the distinctive phenotypes of two PDX with elevated levels of numerous metabolites and increased fractional enrichment of lactate and/or glutamate, capturing the metabolic heterogeneity of glycolysis and the TCA cycle in clinical ccRCC. Culturing PDX cells and reimplanting to generate xenografts (XEN), or passaging PDX in vivo, altered some imaging and metabolic characteristics while transcription remained like that of the original PDX. These findings show that PDX are realistic models of ccRCC for imaging and metabolic studies but that the plasticity of metabolism must be considered when manipulating PDX for preclinical studies.

4.
Transl Oncol ; 25: 101518, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36037557

ABSTRACT

Fat mass and obesity-associated (FTO) protein, the first m6A demethylase identified in 2011, regulates multiple aspects of RNA biology including splicing, localization, stability, and translation. Accumulating data show that FTO is involved in numerous physiological processes and is implicated in multiple cancers including renal cell carcinoma (RCC). However, the exact role of FTO in RCC remains controversial. Some studies demonstrated that decreased FTO expression was associated with aggressive clinical features and shorter overall survival in clear cell RCC (ccRCC) patients, while others found that FTO inhibition selectively reduced the growth and survival of VHL-deficient ccRCC cells in vitro and in vivo. Here, we review the evidence supporting either a promoting or suppressive role of FTO in kidney cancers, the mechanisms of action of FTO, and recent progress in developing FTO inhibitors.

5.
Cell Rep Med ; 3(2): 100502, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35243415

ABSTRACT

Among men, prostate cancer is the second leading cause of cancer-associated mortality, with advanced disease remaining a major clinical challenge. We describe a small molecule, SU086, as a therapeutic strategy for advanced prostate cancer. We demonstrate that SU086 inhibits the growth of prostate cancer cells in vitro, cell-line and patient-derived xenografts in vivo, and ex vivo prostate cancer patient specimens. Furthermore, SU086 in combination with standard of care second-generation anti-androgen therapies displays increased impairment of prostate cancer cell and tumor growth in vitro and in vivo. Cellular thermal shift assay reveals that SU086 binds to heat shock protein 90 (HSP90) and leads to a decrease in HSP90 levels. Proteomic profiling demonstrates that SU086 binds to and decreases HSP90. Metabolomic profiling reveals that SU086 leads to perturbation of glycolysis. Our study identifies SU086 as a treatment for advanced prostate cancer as a single agent or when combined with second-generation anti-androgens.


Subject(s)
Prostatic Neoplasms , Proteomics , Cell Proliferation , Glycolysis , HSP90 Heat-Shock Proteins/metabolism , Humans , Male , Prostatic Neoplasms/drug therapy
6.
Mol Cancer Res ; 19(7): 1123-1136, 2021 07.
Article in English | MEDLINE | ID: mdl-33846123

ABSTRACT

Prostate cancer genomic subtypes that stratify aggressive disease and inform treatment decisions at the primary stage are currently limited. Previously, we functionally validated an aggressive subtype present in 15% of prostate cancer characterized by dual deletion of MAP3K7 and CHD1. Recent studies in the field have focused on deletion of CHD1 and its role in androgen receptor (AR) chromatin distribution and resistance to AR-targeted therapy; however, CHD1 is rarely lost without codeletion of MAP3K7. Here, we show that in the clinically relevant context of co-loss of MAP3K7 and CHD1 there are significant, collective changes to aspects of AR signaling. Although CHD1 loss mainly impacts the expansion of the AR cistrome, loss of MAP3K7 drives increased AR target gene expression. Prostate cancer cell line models engineered to cosuppress MAP3K7 and CHD1 also demonstrated increased AR-v7 expression and resistance to the AR-targeting drug enzalutamide. Furthermore, we determined that low protein expression of both genes is significantly associated with biochemical recurrence (BCR) in a clinical cohort of radical prostatectomy specimens. Low MAP3K7 expression, however, was the strongest independent predictor for risk of BCR over all other tested clinicopathologic factors including CHD1 expression. Collectively, these findings illustrate the importance of MAP3K7 loss in a molecular subtype of prostate cancer that poses challenges to conventional therapeutic approaches. IMPLICATIONS: These findings strongly implicate MAP3K7 loss as a biomarker for aggressive prostate cancer with significant risk for recurrence that poses challenges for conventional androgen receptor-targeted therapies.


Subject(s)
DNA Helicases/genetics , DNA-Binding Proteins/genetics , MAP Kinase Kinase Kinases/genetics , Prostatic Neoplasms/genetics , RNA Interference , Receptors, Androgen/genetics , Signal Transduction/genetics , Androgens/pharmacology , Benzamides/pharmacology , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Humans , Logistic Models , MAP Kinase Kinase Kinases/metabolism , Male , Neoplasm Recurrence, Local , Nitriles/pharmacology , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Risk Factors
7.
Metabolites ; 11(3)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652703

ABSTRACT

Currently, no clinical methods reliably predict the development of castration-resistant prostate cancer (CRPC) that occurs almost universally in men undergoing androgen deprivation therapy. Hyperpolarized (HP) 13C magnetic resonance imaging (MRI) could potentially detect the incipient emergence of CRPC based on early metabolic changes. To characterize metabolic shifts occurring upon the transition from androgen-dependent to castration-resistant prostate cancer (PCa), the metabolism of [U-13C]glucose and [U-13C]glutamine was analyzed by nuclear magnetic resonance spectroscopy. Comparison of steady-state metabolite concentrations and fractional enrichment in androgen-dependent LNCaP cells and transgenic adenocarcinoma of the murine prostate (TRAMP) murine tumors versus castration-resistant PC-3 cells and treatment-driven CRPC TRAMP tumors demonstrated that CRPC was associated with upregulation of glycolysis, tricarboxylic acid metabolism of pyruvate; and glutamine, glutaminolysis, and glutathione synthesis. These findings were supported by 13C isotopomer modeling showing increased flux through pyruvate dehydrogenase (PDH) and anaplerosis; enzymatic assays showing increased lactate dehydrogenase, PDH and glutaminase activity; and oxygen consumption measurements demonstrating increased dependence on anaplerotic fuel sources for mitochondrial respiration in CRPC. Consistent with ex vivo metabolomic studies, HP [1-13C]pyruvate distinguished androgen-dependent PCa from CRPC in cell and tumor models based on significantly increased HP [1-13C]lactate.

8.
Proc Natl Acad Sci U S A ; 117(35): 21441-21449, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32817424

ABSTRACT

Loss of the von Hippel-Lindau (VHL) tumor suppressor is a hallmark feature of renal clear cell carcinoma. VHL inactivation results in the constitutive activation of the hypoxia-inducible factors (HIFs) HIF-1 and HIF-2 and their downstream targets, including the proangiogenic factors VEGF and PDGF. However, antiangiogenic agents and HIF-2 inhibitors have limited efficacy in cancer therapy due to the development of resistance. Here we employed an innovative computational platform, Mining of Synthetic Lethals (MiSL), to identify synthetic lethal interactions with the loss of VHL through analysis of primary tumor genomic and transcriptomic data. Using this approach, we identified a synthetic lethal interaction between VHL and the m6A RNA demethylase FTO in renal cell carcinoma. MiSL identified FTO as a synthetic lethal partner of VHL because deletions of FTO are mutually exclusive with VHL loss in pan cancer datasets. Moreover, FTO expression is increased in VHL-deficient ccRCC tumors compared to normal adjacent tissue. Genetic inactivation of FTO using multiple orthogonal approaches revealed that FTO inhibition selectively reduces the growth and survival of VHL-deficient cells in vitro and in vivo. Notably, FTO inhibition reduced the survival of both HIF wild type and HIF-deficient tumors, identifying FTO as an HIF-independent vulnerability of VHL-deficient cancers. Integrated analysis of transcriptome-wide m6A-seq and mRNA-seq analysis identified the glutamine transporter SLC1A5 as an FTO target that promotes metabolic reprogramming and survival of VHL-deficient ccRCC cells. These findings identify FTO as a potential HIF-independent therapeutic target for the treatment of VHL-deficient renal cell carcinoma.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Synthetic Lethal Mutations , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Amino Acid Transport System ASC/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Computer Simulation , Humans , Hypoxia-Inducible Factor 1/metabolism , Kidney Neoplasms/metabolism , Mice, Knockout , Minor Histocompatibility Antigens/metabolism
9.
Cancers (Basel) ; 12(3)2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32110965

ABSTRACT

Non-invasive assessment of the biological aggressiveness of prostate cancer (PCa) is needed for men with localized disease. Hyperpolarized (HP) 13C magnetic resonance (MR) spectroscopy is a powerful approach to image metabolism, specifically the conversion of HP [1-13C]pyruvate to [1-13C]lactate, catalyzed by lactate dehydrogenase (LDH). Significant increase in tumor lactate was measured in high-grade PCa relative to benign and low-grade cancer, suggesting that HP 13C MR could distinguish low-risk (Gleason score ≤3 + 4) from high-risk (Gleason score ≥4 + 3) PCa. To test this and the ability of HP 13C MR to detect these metabolic changes, we cultured prostate tissues in an MR-compatible bioreactor under continuous perfusion. 31P spectra demonstrated good viability and dynamic HP 13C-pyruvate MR demonstrated that high-grade PCa had significantly increased lactate efflux compared to low-grade PCa and benign prostate tissue. These metabolic differences are attributed to significantly increased LDHA expression and LDH activity, as well as significantly increased monocarboxylate transporter 4 (MCT4) expression in high- versus low- grade PCa. Moreover, lactate efflux, LDH activity, and MCT4 expression were not different between low-grade PCa and benign prostate tissues, indicating that these metabolic alterations are specific for high-grade disease. These distinctive metabolic alterations can be used to differentiate high-grade PCa from low-grade PCa and benign prostate tissues using clinically translatable HP [1-13C]pyruvate MR.

10.
Proc Natl Acad Sci U S A ; 117(4): 2032-2042, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31932422

ABSTRACT

Resistance to androgen deprivation therapy, or castration-resistant prostate cancer (CRPC), is often accompanied by metastasis and is currently the ultimate cause of prostate cancer-associated deaths in men. Recently, secondary hormonal therapies have led to an increase of neuroendocrine prostate cancer (NEPC), a highly aggressive variant of CRPC. Here, we identify that high levels of cell surface receptor Trop2 are predictive of recurrence of localized prostate cancer. Moreover, Trop2 is significantly elevated in CRPC and NEPC, drives prostate cancer growth, and induces neuroendocrine phenotype. Overexpression of Trop2 induces tumor growth and metastasis while loss of Trop2 suppresses these abilities in vivo. Trop2-driven NEPC displays a significant up-regulation of PARP1, and PARP inhibitors significantly delay tumor growth and metastatic colonization and reverse neuroendocrine features in Trop2-driven NEPC. Our findings establish Trop2 as a driver and therapeutic target for metastatic prostate cancer with neuroendocrine phenotype and suggest that high Trop2 levels could identify cancers that are sensitive to Trop2-targeting therapies and PARP1 inhibition.


Subject(s)
Antigens, Neoplasm/metabolism , Biomarkers, Tumor/metabolism , Bone Neoplasms/secondary , Carcinoma, Neuroendocrine/pathology , Cell Adhesion Molecules/metabolism , Gene Expression Regulation, Neoplastic , Poly (ADP-Ribose) Polymerase-1/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Animals , Antigens, Neoplasm/genetics , Apoptosis , Biomarkers, Tumor/genetics , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Carcinoma, Neuroendocrine/drug therapy , Carcinoma, Neuroendocrine/metabolism , Cell Adhesion Molecules/genetics , Cell Movement , Cell Proliferation , Follow-Up Studies , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Invasiveness , Phenotype , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Prognosis , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
11.
Kidney Cancer ; 3(2): 119-132, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31763513

ABSTRACT

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is molecularly diverse and distinct molecular subtypes show different clinical outcomes. MicroRNAs (miRNAs) are essential components of gene regulatory networks and play a crucial role in progression of many cancer types including ccRCC. OBJECTIVE: Identify prognostic miRNAs and determine the role of miR-22 in ccRCC. METHODS: Hierarchical clustering was done in R using gene expression profiles of over 450 ccRCC cases in The Cancer Genome Atlas (TCGA). Kaplan-Meier analysis was performed to identify prognostic miRNAs in the TCGA dataset. RNA-Seq was performed to identify miR-22 target genes in primary ccRCC cells and Matrigel invasion assay was performed to assess the effects of miR-22 overexpression on cell invasion. RESULTS: Hierarchical clustering analysis using 2,621 prognostic genes previously identified by our group demonstrated that ccRCC patients with longer overall survival expressed lower levels of genes promoting proliferation or immune responses, while better maintaining gene expression associated with cortical differentiation and cell adhesion. Targets of 26 miRNAs were significantly enriched in the 2,621 prognostic genes and these miRNAs were prognostic by themselves. MiR-22 was associated with poor overall survival in the TCGA dataset. Overexpression of miR-22 promoted invasion of primary ccRCC cells in vitro and modulated transcriptional programs implicated in cancer progression including DNA repair, cell proliferation and invasion. CONCLUSIONS: Our results suggest that ccRCCs with differential clinical outcomes have distinct transcriptomes for which miRNAs could serve as master regulators. MiR-22, as a master regulator, promotes ccRCC progression at least in part by enhancing cell invasion.

12.
Cancer Res ; 79(22): 5758-5768, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31585940

ABSTRACT

Angiogenesis is a hallmark of cancer that promotes tumor progression and metastasis. However, antiangiogenic agents have limited efficacy in cancer therapy due to the development of resistance. In clear cell renal cell carcinoma (ccRCC), AXL expression is associated with antiangiogenic resistance and poor survival. Here, we establish a role for GAS6/AXL signaling in promoting the angiogenic potential of ccRCC cells through the regulation of the plasminogen receptor S100A10. Genetic and therapeutic inhibition of AXL signaling in ccRCC tumor xenografts reduced tumor vessel density and growth under the renal capsule. GAS6/AXL signaling activated the expression of S100A10 through SRC to promote plasmin production, endothelial cell invasion, and angiogenesis. Importantly, treatment with the small molecule AXL inhibitor cabozantinib or an ultra-high affinity soluble AXL Fc fusion decoy receptor (sAXL) reduced the growth of a pazopanib-resistant ccRCC patient-derived xenograft. Moreover, the combination of sAXL synergized with pazopanib and axitinib to reduce ccRCC patient-derived xenograft growth and vessel density. These findings highlight a role for AXL/S100A10 signaling in mediating the angiogenic potential of ccRCC cells and support the combination of AXL inhibitors with antiangiogenic agents for advanced ccRCC. SIGNIFICANCE: These findings show that angiogenesis in renal cell carcinoma (RCC) is regulated through AXL/S100A10 signaling and support the combination of AXL inhibitors with antiangiogenic agents for the treatment of RCC.


Subject(s)
Annexin A2/metabolism , Carcinoma, Renal Cell/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Kidney Neoplasms/metabolism , Neovascularization, Pathologic/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , S100 Proteins/metabolism , Animals , Carcinoma, Renal Cell/pathology , Cell Line , Cell Line, Tumor , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Kidney/metabolism , Kidney/pathology , Kidney Neoplasms/pathology , Mice , Mice, Knockout , Neovascularization, Pathologic/pathology , Signal Transduction/physiology , Axl Receptor Tyrosine Kinase
13.
Magn Reson Med ; 82(2): 566-576, 2019 08.
Article in English | MEDLINE | ID: mdl-30924180

ABSTRACT

PURPOSE: Image-guided prostate biopsies are routinely acquired in the diagnosis and treatment monitoring of prostate cancer, yielding useful tissue for identifying metabolic biomarkers and therapeutic targets. We developed an optimized biopsy tissue culture protocol in combination with [1,6-13 C2 ]glucose labeling and quantitative high-resolution NMR to measure glycolysis and tricarboxcylic acid (TCA) cycle activity in freshly acquired living human prostate biopsies. METHODS: We acquired 34 MRI-ultrasound fusion-guided prostate biopsies in vials on ice from 22 previously untreated patients. Within 15 min, biopsies were transferred to rotary tissue culture in 37°C prostate medium containing [1,6-13 C2 ]glucose. Following 24 h of culture, tissue lactate and glutamate pool sizes and fractional enrichments were quantified using quantitative 1 H high resolution magic angle spinning Carr-Purcell-Meiboom-Gill (CPMG) spectroscopy at 1°C with and without 13 C decoupling. Lactate effluxed from the biopsy tissue was quantified in the culture medium using quantitative solution-state high-resolution NMR. RESULTS: Lactate concentration in low-grade cancer (1.15 ± 0.78 nmol/mg) and benign (0.74 ± 0.15 nmol/mg) biopsies agreed with prior published measurements of snap-frozen biopsies. There was substantial fractional enrichment of [3-13 C]lactate (≈70%) and [4-13 C]glutamate (≈24%) in both low-grade cancer and benign biopsies. Although a significant difference in tissue [3-13 C]lactate fractional enrichment was not observed, lactate efflux was significantly higher (P < 0.05) in low-grade cancer biopsies (0.55 ± 0.14 nmol/min/mg) versus benign biopsies (0.31 ± 0.04 nmol/min/mg). CONCLUSION: A protocol was developed for quantification of lactate production-efflux and TCA cycle activity in single living human prostate biopsies, allowing metabolic labeling on a wide spectrum of human tissues (e.g., metastatic, post-non-surgical therapy) from patients not receiving surgery.


Subject(s)
Carbon-13 Magnetic Resonance Spectroscopy/methods , Glucose/metabolism , Glutamic Acid/metabolism , Lactic Acid/analysis , Prostate , Biopsy/methods , Carbon Isotopes/chemistry , Carbon Isotopes/metabolism , Glucose/chemistry , Glutamic Acid/analysis , Humans , Lactic Acid/metabolism , Male , Prostate/metabolism , Prostate/pathology , Ultrasonography/methods
14.
Oncotarget ; 9(3): 3631-3640, 2018 Jan 09.
Article in English | MEDLINE | ID: mdl-29423071

ABSTRACT

Prostate cancer is the most common cancer occurring in men in the United States. The monoclonal antibody F77 that was originally developed in our laboratory recognizes mainly glycolipids as well as O-linked glycosylation on proteins in prostate cancer cells. We have identified a spliced form of glycoprotein CD44 as one critical protein expressing the F77 antigen. The F77-specific glycosylation occurs on multiple potential glycosylation sites on the CD44 protein encoded by the fourteenth exon. CD44 is a tumor stem cell marker and is known to induce tumor stemness and metastasis. Knockdown of CD44 or FUT1 genes dramatically reduced F77-induced apoptosis in prostate cancer cell lines. We developed an ELISA using both a CD44 antibody and F77 to identify the special form of glycosylated CD44 from prostate cancer cells as well as from serum samples of prostate cancer patients. These results reveal a CD44-dependent mechanism for F77 to induce tumor cell apoptosis, and a new strategy for the detection of glycosylated CD44 proteins secreted by prostate cancer cells.

15.
Cancer Chemother Pharmacol ; 81(3): 621-626, 2018 03.
Article in English | MEDLINE | ID: mdl-29404682

ABSTRACT

Responses to immuno-oncology agents are often subject to misinterpretation as apparent tumor growth due to immune infiltration leads to the appearance of progressive disease and can result in the discontinuation of effective therapeutic agents. Better statistical strategies to determine experimental outcomes are needed to distinguish between true and pseudoprogression. We applied time-to-event statistical analyses methods that account for study design features and capture the longitudinal and panoramic aspects of pseudoprogression to test superiority of a combination of RRx-001, a novel tumor-associated macrophage polarizing agent in Phase 2, and an anti-PD-L1 antibody in a myeloma preclinical model, comparing to traditional, mean-based mixed effects modeling approaches that did not show statistical significance. Nonparametric p values for the difference of cumulative incidence rates of time to ≥ 50% tumor growth reduction and its associated restricted mean survival times are computed and found to be statistically significant. Kaplan-Meier description of time-to-volume reduction (≥ 50%) coupled with Cox's proportional hazards model follows the data longitudinally and therefore permits an analysis of immune infiltration resolution, making it an improved method for analysis of preclinical experiments with immuno-oncology agents.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Outcome Assessment, Health Care/statistics & numerical data , Tumor Burden/drug effects , Disease Progression , Humans , Kaplan-Meier Estimate , Neoplasms/diagnostic imaging , Neoplasms/pathology , Positron Emission Tomography Computed Tomography , Proportional Hazards Models
16.
Angew Chem Int Ed Engl ; 56(31): 8992-8997, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28649697

ABSTRACT

Sialylated glycans are found at elevated levels in many types of cancer and have been implicated in disease progression. However, the specific glycoproteins that contribute to the cancer cell-surface sialylation are not well characterized, specifically in bona fide human disease tissue. Metabolic and bioorthogonal labeling methods have previously enabled the enrichment and identification of sialoglycoproteins from cultured cells and model organisms. Herein, we report the first application of this glycoproteomic platform to human tissues cultured ex vivo. Both normal and cancerous prostate tissues were sliced and cultured in the presence of the azide-functionalized sialic acid biosynthetic precursor Ac4 ManNAz. The compound was metabolized to the azidosialic acid and incorporated into cell surface and secreted sialoglycoproteins. Chemical biotinylation followed by enrichment and mass spectrometry led to the identification of glycoproteins that were found at elevated levels or uniquely in cancerous prostate tissue. This work therefore extends the use of bioorthogonal labeling strategies to problems of clinical relevance.


Subject(s)
Azides/metabolism , Hexosamines/metabolism , Prostatic Neoplasms/pathology , Proteomics/methods , Sialoglycoproteins/metabolism , Azides/chemistry , Biotinylation , Carbocyanines/chemistry , Hexosamines/chemistry , Humans , In Vitro Techniques , Male , Mass Spectrometry , Microscopy, Fluorescence , Principal Component Analysis , Prostatic Neoplasms/metabolism , Sialoglycoproteins/chemistry , Voltage-Dependent Anion Channel 1/genetics , Voltage-Dependent Anion Channel 1/metabolism
17.
Clin Epigenetics ; 9: 4, 2017.
Article in English | MEDLINE | ID: mdl-28149332

ABSTRACT

BACKGROUND: RRx-001, a dinitroazetidine derivative, is a novel anticancer agent currently in phase II clinical trials. It mediates immunomodulatory effects either directly through polarization of tumor associated macrophages or indirectly through vascular normalization and increased T-lymphocyte infiltration. With multiple additional mechanisms of action including upregulation of oxidative stress, depletion of GSH and NADPH, anti-angiogenesis and epigenetic modulation, RRx-001 is being studied as a radio- and chemo-sensitizer to resensitize tumors to prior therapy and to prime tumors to respond to radiation, chemotherapy and immunotherapy in combination therapy studies. Here, we identified another mechanism, viral mimicry, which refers to the "unsilencing" of epigenetically repressed viral genes present in the tumor that provokes an immune response and may contribute to the anticancer activity of RRx-001. RESULTS: RRx-001 inhibited the growth of colon cancer cells (HCT 116) and decreased levels of the DNA methyltransferases DNMT1 and DNMT3a in a time and dose-dependent manner. Treatment of HCT 116 cells with 0.5 µM RRx-001 for 24 h significantly increased transcripts of interferon (IFN)-responsive genes and this induction was sustained for up to 4 weeks after transient exposure to RRx-001. ELISA assays showed that RRx-001 increased secretion of type I and III IFNs by HCT 116 cells, and these IFNs were confirmed to be bioactive. Transcription of endogenous retrovirus ERV-Fc2 and LTRs from the ERV-L family (MLT2B4 and MLT1C49) was induced by RRx-001. The induction of ERV-Fc2-env was through demethylation of ERV-Fc2 LTR as determined by methylation-specific polymerase chain reaction and combined bisulfite restriction analysis. Immunofluorescence staining with J2 antibody confirmed induction of double-stranded RNA. CONCLUSIONS: Transient exposure of HCT 116 cells to low-dose RRx-001 induced transcription of silenced retroviral genes present in the cancer cell DNA with subsequent synthesis of IFN in response to this "pseudo-pathogenic" stimulus, mimicking an antiviral defense. RRx-001-mediated IFN induction may have the potential to improve the efficacy of immunotherapies as well as radiotherapy, standard chemotherapies and molecularly targeted agents when used in combination. The striking safety profile of RRx-001 in comparison to other more toxic epigenetic and immunomodulatory agents such as azacitidine makes it a leading candidate for such clinical applications.


Subject(s)
Azetidines/pharmacology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/immunology , Interferons/immunology , Nitro Compounds/pharmacology , Antineoplastic Agents/pharmacology , Azacitidine/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Colonic Neoplasms/enzymology , Colonic Neoplasms/genetics , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Endogenous Retroviruses/genetics , Endogenous Retroviruses/immunology , Epigenesis, Genetic/drug effects , HCT116 Cells , Humans , Immunologic Factors/pharmacology , Interferons/biosynthesis , Interferons/genetics , Molecular Mimicry , Transcription, Genetic , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
18.
Expert Opin Investig Drugs ; 26(1): 109-119, 2017 01.
Article in English | MEDLINE | ID: mdl-27935336

ABSTRACT

INTRODUCTION: According to Hanahan and Weinberg, cancer manifests as six essential physiologic hallmarks: (1) self-sufficiency in growth signals, (2) insensitivity to growth-inhibitory signals, (3) evasion of programmed cell death, (4) limitless replicative potential, (5) sustained angiogenesis, and (6) invasion and metastasis. As a facilitator of these traits as well as immunosuppression and chemoresistance, the presence of tumor-associated macrophages (TAMs) may serve as the seventh hallmark of cancer. Anticancer agents that successfully reprogram TAMs to target rather than support tumor cells may hold the key to better therapeutic outcomes. Areas covered: This article summarizes the characteristics of the macrophage-stimulating agent RRx-001, a molecular iconoclast, sourced from the aerospace industry, with a particular emphasis on the cell-to-cell transfer mechanism of action (RBCs to TAMs) underlying its antitumor activity as well as its chemo and radioprotective properties, consolidated from various preclinical and clinical studies. Expert opinion: RRx-001 is macrophage-stimulating agent with the potential to synergize with chemotherapy, radiotherapy and immunotherapy while simultaneously protecting normal tissues from their cytotoxic effects. Given the promising indications of activity in multiple tumor types and these normal tissue protective properties, RRx-001 may be used to treat a broad spectrum of malignancies, if it is approved in the future.


Subject(s)
Azetidines/therapeutic use , Macrophages/drug effects , Neoplasms/drug therapy , Nitro Compounds/therapeutic use , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Azetidines/adverse effects , Azetidines/pharmacology , Cell Death/drug effects , Drug Resistance, Neoplasm , Humans , Macrophages/metabolism , Neoplasms/pathology , Nitro Compounds/adverse effects , Nitro Compounds/pharmacology
19.
Cancer Biol Ther ; 18(11): 863-871, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-27715452

ABSTRACT

MET plays an important role in the development and progression of papillary renal cell carcinoma (pRCC). Evaluation of efficacy of MET inhibitors against pRCC has been hampered by limited preclinical models depicting MET abnormalities. We established a new patient-derived xenograft (PDX) model of pRCC carrying an activating mutation of MET and tested the ability of cabozantinib, an inhibitor of receptor tyrosine kinases including MET, to inhibit tumor growth and metastasis. Precision-cut, thin tissue slices from a pRCC specimen obtained by nephrectomy were implanted under the renal capsule of RAG2-/-γC-/- mice to establish first generation TSG-RCC-030. Histologic and genetic fidelity and metastatic potential of this model were characterized by immunohistochemistry, direct DNA sequencing and quantitative polymerase chain reaction (qPCR). The effect of cabozantinib on tumor growth and metastasis was evaluated. Whether measurements of circulating tumor DNA (ctDNA) by allele-specific qPCR could be used as a biomarker of tumor growth and response to therapy was determined. Subrenal and subcutaneous tumor grafts showed high take rates and metastasized to the lung. Both primary tumors and metastases expressed typical markers of pRCC and carried the same activating MET mutation as the parental tumor. Cabozantinib treatment caused striking tumor regression and inhibited lung metastasis in TSG-RCC-030. Plasma ctDNA levels correlated with tumor volume in control mice and changed in response to cabozantinib treatment. TSG-RCC-030 provides a realistic preclinical model to better understand the development and progression of pRCC with MET mutation and accelerate the development of new therapies for pRCC.


Subject(s)
Anilides/therapeutic use , Carcinoma, Renal Cell/drug therapy , Kidney Neoplasms/drug therapy , Pyridines/therapeutic use , Receptor Protein-Tyrosine Kinases/therapeutic use , Anilides/pharmacology , Animals , Carcinoma, Renal Cell/pathology , Disease Models, Animal , Humans , Kidney Neoplasms/pathology , Mice , Mutation , Neoplasm Metastasis , Pyridines/pharmacology , Receptor Protein-Tyrosine Kinases/pharmacology , Xenograft Model Antitumor Assays
20.
Eur Urol ; 71(3): 319-327, 2017 03.
Article in English | MEDLINE | ID: mdl-27160946

ABSTRACT

BACKGROUND: Technology development to enable the culture of human prostate cancer (PCa) progenitor cells is required for the identification of new, potentially curative therapies for PCa. OBJECTIVE: We established and characterized patient-derived conditionally reprogrammed cells (CRCs) to assess their biological properties and to apply these to test the efficacies of drugs. DESIGN, SETTING, AND PARTICIPANTS: CRCs were established from seven patient samples with disease ranging from primary PCa to advanced castration-resistant PCa (CRPC). The CRCs were characterized by genomic, transcriptomic, protein expression, and drug profiling. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The phenotypic quantification of the CRCs was done based on immunostaining followed by image analysis with Advanced Cell Classifier using Random Forest supervised machine learning. Copy number aberrations (CNAs) were called from whole-exome sequencing and transcriptomics using in-house pipelines. Dose-response measurements were used to generate multiparameter drug sensitivity scores using R-statistical language. RESULTS AND LIMITATIONS: We generated six benign CRC cultures which all had an androgen receptor-negative, basal/transit-amplifying phenotype with few CNAs. In three-dimensional cell culture, these cells could re-express the androgen receptor. The CRCs from a CRPC patient (HUB.5) displayed multiple CNAs, many of which were shared with the parental tumor. We carried out high-throughput drug-response studies with 306 emerging and clinical cancer drugs. Using the benign CRCs as controls, we identified the Bcl-2 family inhibitor navitoclax as the most potent cancer-specific drug for the CRCs from a CRPC patient. Other drug efficacies included taxanes, mepacrine, and retinoids. CONCLUSIONS: Comprehensive cancer pharmacopeia-wide drug testing of CRCs from a CRPC patient highlighted both known and novel drug sensitivities in PCa, including navitoclax, which is currently being tested in clinical trials of CRPC. PATIENT SUMMARY: We describe an approach to generate patient-derived cancer cells from advanced prostate cancer and apply such cells to discover drugs that could be applied in clinical trials for castration-resistant prostate cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Cellular Reprogramming Techniques , Precision Medicine , Prostatic Neoplasms, Castration-Resistant/drug therapy , Tumor Cells, Cultured/drug effects , Aniline Compounds/pharmacology , Bexarotene , Drug Screening Assays, Antitumor , High-Throughput Screening Assays , Humans , Kallikreins/metabolism , Keratin-18/metabolism , Keratin-5/metabolism , Male , Organoplatinum Compounds/pharmacology , Oxaliplatin , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Quinacrine/pharmacology , Receptors, Androgen/metabolism , Sulfonamides/pharmacology , Tetrahydronaphthalenes/pharmacology , Tretinoin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...