Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
World J Cardiol ; 8(3): 283-92, 2016 Mar 26.
Article in English | MEDLINE | ID: mdl-27022460

ABSTRACT

AIM: To combine pressure and flow parameter, pressure drop coefficient (CDP) will result in better clinical outcomes in comparison to the fractional flow reserve (FFR) group. METHODS: To test this hypothesis, a comparison was made between the FFR < 0.75 and CDP > 27.9 groups in this study, for the major adverse cardiac events [major adverse cardiac events (MACE): Primary outcome] and patients' quality of life (secondary outcome). Further, a comparison was also made between the survival curves for the FFR < 0.75 and CDP > 27.9 groups. Two-tailed χ (2) test proportions were performed for the comparison of primary and secondary outcomes. Kaplan-Meier survival analysis was performed to compare the survival curves of FFR < 0.75 and CDP > 27.9 groups (MedcalcV10.2, Mariakerke, Belgium). Results were considered statistically significant for P < 0.05. RESULTS: The primary outcomes (%MACE) in the FFR < 0.75 group (20%, 4 out of 20) was not statistically different (P = 0.24) from the %MACE occurring in CDP > 27.9 group (8.57%, 2 out of 35). Noteworthy is the reduction in the %MACE in the CDP > 27.9 group, in comparison to the FFR < 0.75 group. Further, the secondary outcomes were not statistically significant between the FFR < 0.75 and CDP > 27.9 groups. Survival analysis results suggest that the survival time for the CDP > 27.9 group (n = 35) is significantly higher (P = 0.048) in comparison to the survival time for the FFR < 0.75 group (n = 20). The results remained similar for a FFR = 0.80 cut-off. CONCLUSION: Based on the above, CDP could prove to be a better diagnostic end-point for clinical revascularization decision-making in the cardiac catheterization laboratories.

3.
Heart Vessels ; 29(1): 97-109, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23624760

ABSTRACT

In this study, coronary diagnostic parameters, pressure drop coefficient (CDP: ratio of trans-stenotic pressure drop to distal dynamic pressure), and lesion flow coefficient (LFC: ratio of % area stenosis (%AS) to the CDP at throat region), were evaluated to distinguish levels of %AS under varying contractility conditions, in the presence of microvascular disease (MVD). In 10 pigs, %AS and MVD were created using angioplasty balloons and 90-µm microspheres, respectively. Simultaneous measurements of pressure drop, left ventricular pressure (p), and velocity were obtained. Contractility was calculated as (dp/dt)max, categorized into low contractility <900 mmHg/s and high contractility >900 mmHg/s, and in each group, compared between %AS <50 and >50 using analysis of variance. In the presence of MVD, between the %AS <50 and >50 groups, values of CDP (71 ± 1.4 and 121 ± 1.3) and LFC (0.10 ± 0.04 and 0.19 ± 0.04) were significantly different (P < 0.05), under low-contractility conditions. A similar %AS trend was observed under high-contractility conditions (CDP: 18 ± 1.4 and 91 ± 1.4; LFC: 0.08 ± 0.04 and 0.25 ± 0.04). Under MVD conditions, similar to fractional flow reserve, CDP and LFC were not influenced by contractility.


Subject(s)
Coronary Artery Disease/physiopathology , Coronary Stenosis/physiopathology , Coronary Vessels/physiopathology , Fractional Flow Reserve, Myocardial , Hemodynamics , Microcirculation , Myocardial Contraction , Ventricular Function, Left , Animals , Blood Flow Velocity , Coronary Artery Disease/diagnosis , Coronary Stenosis/diagnosis , Disease Models, Animal , Severity of Illness Index , Swine , Ventricular Pressure
4.
J Biomech ; 42(16): 2753-9, 2009 Dec 11.
Article in English | MEDLINE | ID: mdl-19775695

ABSTRACT

Functional severity of coronary stenosis is often assessed using diagnostic parameters. These parameters are evaluated from the combined pressure and/or flow measurements taken at the site of the stenosis. However, when there are functional collaterals operating downstream to the stenosis, the coronary flow-rate increases, and the pressure in the stenosed artery is altered. This effect of downstream collaterals on different diagnostic parameters is studied using a physiological representative in vitro coronary flow-loop. The three diagnostic parameters tested are fractional flow reserve (FFR), lesion flow coefficient (LFC), and pressure drop coefficient (CDP). The latter two were discussed in recent publications by our group (Banerjee et al., 2007, 2008, 2009). They are evaluated for three different severities of stenosis and tested for possible misinterpretation in the presence of variable collateral flows. Pressure and flow are measured with and without downstream collaterals. The diagnostic parameters are then calculated from these readings. In the case of intermediate stenosis (80% area blockage), FFR and LFC increased from 0.74 to 0.77 and 0.58 to 0.62, respectively, for no collateral to fully developed collateral flow. Also, CDP decreased from 47 to 42 for no collateral to fully developed collateral flow. These changes in diagnostic parameters might lead to erroneous postponement of coronary intervention. Thus, variability in diagnostic parameters for the same stenosis might lead to misinterpretation of stenosis severity in the presence of operating downstream collaterals.


Subject(s)
Blood Flow Velocity , Blood Pressure , Collateral Circulation , Coronary Circulation , Coronary Stenosis/diagnosis , Coronary Stenosis/physiopathology , Coronary Vessels/physiopathology , Biomimetics/methods , Humans , Models, Cardiovascular , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...