Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Physiol Plant ; 174(1): e13648, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35150009

ABSTRACT

Female fig (Ficus carica L.) fruit are characterized by a major increase in volume and sugar content during the final week of development. A detailed developmental analysis of water and dry matter accumulation during these final days indicated a temporal separation between the increase in volume due to increasing water content and a subsequent sharp increase in sugar content during a few days. The results present fig as an extreme example of sugar import and accumulation, with calculated import rates that are one order of magnitude higher than those of other sugar-accumulating sweet fruit species. To shed light on the metabolic changes occurring during this period, we followed the expression pattern of 80 genes encoding sugar metabolism enzymes and sugar transporter proteins identified in fig fruit. A parallel comparison with male fig fruits, which do not accumulate sugar during ripening, highlighted the genes specifically related to sugar accumulation. Tissue-specific analysis indicated that the expression of genes involved in sugar metabolism and transport undergoes a global transition.


Subject(s)
Ficus , Ficus/genetics , Ficus/metabolism , Fruit/metabolism , Gene Expression , Gene Expression Regulation, Plant , Sugars/metabolism
2.
Plants (Basel) ; 11(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35161308

ABSTRACT

Medical cannabis (Cannabis sativa L.) is quickly becoming a central agricultural crop as its production has continued to increase globally. The recent release of the cannabis reference genomes provides key genetic information for the functional analysis of cannabis genes. Currently, however, the established tools for in vivo gene functional analysis in cannabis are very limited. In this study, we investigated the use of the tobacco rattle virus (TRV) as a possible tool for virus-induced gene silencing (VIGS) and virus-aided gene expression (VAGE). Using leaf photobleaching as a visual marker of PHYTOENE DESATURASE (PDS) silencing, we found that VIGS was largely restricted to the agro-infiltrated leaves. However, when agro-infiltration was performed under vacuum, VIGS increased dramatically, which resulted in intense PDS silencing and an increased photobleaching phenotype. The suitability of TRV as a vector for virus-aided gene expression (VAGE) was demonstrated by an analysis of DsRed fluorescence protein. Interestingly, a DsRed signal was also observed in glandular trichomes in TRV2-DsRed-infected plants, which suggests the possibility of trichome-related gene function analysis. These results indicate that TRV, despite its limited spread, is an attractive vector for rapid reverse-genetics screens and for the analysis of gene function in cannabis.

3.
Front Plant Sci ; 12: 753847, 2021.
Article in English | MEDLINE | ID: mdl-34804093

ABSTRACT

In the last decades, growing evidence showed the therapeutic capabilities of Cannabis plants. These capabilities were attributed to the specialized secondary metabolites stored in the glandular trichomes of female inflorescences, mainly phytocannabinoids and terpenoids. The accumulation of the metabolites in the flower is versatile and influenced by a largely unknown regulation system, attributed to genetic, developmental and environmental factors. As Cannabis is a dioecious plant, one main factor is fertilization after successful pollination. Fertilized flowers are considerably less potent, likely due to changes in the contents of phytocannabinoids and terpenoids; therefore, this study examined the effect of fertilization on metabolite composition by crossbreeding (-)-Δ9-trans-tetrahydrocannabinol (THC)- or cannabidiol (CBD)-rich female plants with different male plants: THC-rich, CBD-rich, or the original female plant induced to develop male pollen sacs. We used advanced analytical methods to assess the phytocannabinoids and terpenoids content, including a newly developed semi-quantitative analysis for terpenoids without analytical standards. We found that fertilization significantly decreased phytocannabinoids content. For terpenoids, the subgroup of monoterpenoids had similar trends to the phytocannabinoids, proposing both are commonly regulated in the plant. The sesquiterpenoids remained unchanged in the THC-rich female and had a trend of decrease in the CBD-rich female. Additionally, specific phytocannabinoids and terpenoids showed an uncommon increase in concentration followed by fertilization with particular male plants. Our results demonstrate that although the profile of phytocannabinoids and their relative ratios were kept, fertilization substantially decreased the concentration of nearly all phytocannabinoids in the plant regardless of the type of fertilizing male. Our findings may point to the functional roles of secondary metabolites in Cannabis.

4.
J Plant Physiol ; 251: 153192, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32554070

ABSTRACT

Fig fruit is well-known for its attractive flavor, color, and nutritional and medicinal value. Anthocyanin contributes to the fruit's color and constitutes a high percentage of the total antioxidant content of the fig fruit. We quantified the major anthocyanins and characterized the expression levels of anthocyanin-biosynthesis and transcription factor genes in fruit treated on-tree with exogenous abscisic acid (ABA) or ethephon, or the ABA inhibitors nordihydroguaiaretic acid (NDGA) or fluridone. The major anthocyanins cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside were found in significantly higher quantities in exogenous ABA- and ethephon-treated fruit, with early dark purple color compared to the controls. On the other hand, NDGA- and fluridone-treated fruit had significantly lower amounts of anthocyanins, with less purple color coverage than controls. Expression levels of the anthocyanin-biosynthesis genes FcPAL, FcCHS2, FcCHI, FcF3H, FcDFR, FcANS, FcUFGT and Fc3RT were upregulated by exogenous ABA and ethephon treatment, and downregulated by NDGA and fluridone treatment. The MYB-bHLH-WD40 complex-related genes of ripe fig fruit were identified. In particular, FcMYB113 was strongly upregulated by exogenous ABA and ethephon, and strongly downregulated by NDGA and fluridone. In addition, moderate upregulation of FcGL3 and FcWD40 was observed with exogenous ABA and ethephon treatment, and moderate downregulation in NDGA- and fluridone-treated fruit. These results indicate that ABA can initiate anthocyanin biosynthesis, which ultimately improves the color and nutritional value of fig fruit, enhancing their attractiveness to consumers.


Subject(s)
Anthocyanins/metabolism , Ficus/physiology , Fruit/physiology , Pigmentation/drug effects , Plant Growth Regulators , Abscisic Acid/antagonists & inhibitors , Abscisic Acid/pharmacology , Color , Ficus/growth & development , Fruit/growth & development , Masoprocol/pharmacology , Organophosphorus Compounds/pharmacology , Plant Growth Regulators/antagonists & inhibitors , Plant Growth Regulators/pharmacology , Pyridones/pharmacology
5.
Physiol Plant ; 168(1): 133-147, 2020 Jan.
Article in English | MEDLINE | ID: mdl-30740711

ABSTRACT

Organic acids are important components of overall fruit quality through flavor, taste, nutritional and medicinal values. Pollinated fig (Ficus carica L.) fruit quality is enhanced by increased acidity. We quantified the major organic acids and characterized the expression pattern of organic acid metabolic pathway-related genes in the reproductive part - inflorescence and non-reproductive part - receptacle of parthenocarpic and pollinated fig fruit during ripening. Essentially, pollinated fruit contains seeds in the inflorescence, as opposed to no seeds in the parthenocarpic inflorescence. The major organic acids - citrate and malate - were found in relatively high quantities in the inflorescence compared to the receptacle of both parthenocarpic and pollinated fig fruit. Notably, pollination increased citric acid content significantly in both inflorescence and receptacle. Genes related to the phosphoenolpyruvate carboxylase (PEPC) cycle, tricarboxylic acid cycle, citrate catabolism and glyoxylate cycle were identified in fig fruit. Expression levels of most of these genes were higher in inflorescences than in receptacles. In particular, FcPEPC and FcFUM (encoding fumarase) had significantly higher expression in the inflorescence of pollinated fruit. Most importantly, expression of the glyoxylate cycle genes FcMLS and FcICL (encoding malate synthase and isocitrate lyase, respectively) was induced to strikingly high levels in the inflorescence by pollination, and their expression level was highly positively correlated with the contents of all organic acids. Therefore, the glyoxylate cycle may be responsible for altering the accumulation of organic acids to upgrade the fruit taste during ripening, especially in the pollinated, seeded inflorescence.


Subject(s)
Citric Acid/metabolism , Ficus/metabolism , Fruit/metabolism , Malates/metabolism , Pollination , Fruit/genetics , Gene Expression Regulation, Plant , Inflorescence/metabolism
6.
J Exp Bot ; 70(1): 115-131, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30239815

ABSTRACT

The common fig bears a unique closed inflorescence structure, the syconium, composed of small individual drupelets that develop from the ovaries, which are enclosed in a succulent receptacle of vegetative origin. The fig ripening process is traditionally classified as climacteric; however, recent studies have suggested that distinct mechanisms exist in its reproductive and non-reproductive parts. We analysed ABA and ethylene production, and expression of ABA-metabolism, ethylene-biosynthesis, MADS-box, NAC, and ethylene response-factor genes in inflorescences and receptacles of on-tree fruit treated with ABA, ethephon, fluridone, and nordihydroguaiaretic acid (NDGA). Exogenous ABA and ethephon accelerated fruit ripening and softening, whereas fluridone and NDGA had the opposite effect, delaying endogenous ABA and ethylene production compared to controls. Expression of the ABA-biosynthesis genes FcNCED2 and FcABA2, ethylene-biosynthesis genes FcACS4, FcACOL, and FcACO2, FcMADS8, 14, 15, FcNAC1, 2, 5, and FcERF9006 was up-regulated by exogenous ABA and ethephon. NDGA down-regulated FcNCED2 and FcABA2, whereas fluridone down-regulated FcABA2; both down-regulated the ethylene-related genes. These results demonstrate the key role of ABA in regulation of ripening by promoting ethylene production, as in the climacteric model plant tomato, especially in the inflorescence. However, increasing accumulation of endogenous ABA until full ripeness and significantly low expression of ethylene-biosynthesis genes in the receptacle suggests non-climacteric, ABA-dependent ripening in the vegetative-originated succulent receptacle part of the fruit.


Subject(s)
Abscisic Acid/pharmacology , Ficus/growth & development , Masoprocol/pharmacology , Organophosphorus Compounds/pharmacology , Plant Growth Regulators/pharmacology , Pyridones/pharmacology , Abscisic Acid/antagonists & inhibitors , Ethylenes/pharmacology , Ficus/genetics , Ficus/metabolism , Fruit/growth & development , Fruit/metabolism , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Inflorescence/growth & development , Inflorescence/metabolism , Plant Growth Regulators/antagonists & inhibitors , Plant Proteins/genetics , Plant Proteins/metabolism
7.
Plant Sci ; 241: 164-76, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26706068

ABSTRACT

Annual and perennial plants represent two different evolutionary strategies based on differential synchronization of their reproductive development. The mobile signal protein FLOWERING LOCUS T (FT) plays a central role in mediating the onset of reproduction in both plant types. Two novel FT-like genes from pear (Pyrus communis)-PcFT1 and PcFT2-were isolated, and their expression profiles were determined for one annual cycle. The effects of PcFT2 on flowering were investigated in annual (tobacco) and perennial (apple) plants by means of grafting and generating transgenic plants. Long-distance graft transmission of PcFT2 in both annual and perennial plants was confirmed using a 35S::PcFT2-YFP construct. Ectopic overexpression of PcFT2 caused early flowering in tobacco but not in apple. Transgenic apples were less sensitive to short-day-induced dormancy, and this phenotype was also observed in wild-type apples grafted onto the transgenic plants. Comparison of PcFT2 protein structure to the paralogous FT proteins from apple and pear showed alterations that could influence protein structure and thus the florigen-activation complex. PcFT2 protein seems to function by promoting flowering as all other FT proteins in the annual plant tobacco while in the perennial plant apple PcFT2 does not promote flowering but delays senescence. This observation may hint to a modified function of FT2 in perennial plants.


Subject(s)
Gene Expression Regulation, Plant , Malus/physiology , Nicotiana/growth & development , Plant Proteins/genetics , Pyrus/genetics , Amino Acid Sequence , Flowers/growth & development , Malus/genetics , Molecular Sequence Data , Phylogeny , Plant Dormancy , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/physiology , Pyrus/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Transgenes
8.
Planta ; 241(4): 941-51, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25528147

ABSTRACT

MAIN CONCLUSION: Targeting a gene in apple or fig with ZFN, introduced by transient or stable transformation, should allow genome editing with high precision to advance basic science and breeding programs. Genome editing is a powerful tool for precise gene manipulation in any organism; it has recently been shown to be of great value for annual plants. Classical breeding strategies using conventional cross-breeding and induced mutations have played an important role in the development of new cultivars in fruit trees. However, fruit-tree breeding is a lengthy process with many limitations. Efficient and widely applied methods for targeted modification of fruit-tree genomes are not yet available. In this study, transgenic apple and fig lines carrying a zinc-finger nuclease (ZFNs) under the control of a heat-shock promoter were developed. Editing of a mutated uidA gene, following expression of the ZFN genes by heat shock, was confirmed by GUS staining and PCR product sequencing. Finally, whole plants with a repaired uidA gene due to deletion of a stop codon were regenerated. The ZFN-mediated gene modifications were stable and passed onto regenerants from ZFN-treated tissue cultures. This is the first demonstration of efficient and precise genome editing, using ZFN at a specific genomic locus, in two different perennial fruit trees-apple and fig. We conclude that targeting a gene in apple or fig with a ZFN introduced by transient or stable transformation should allow knockout of a gene of interest. Using this technology for genome editing allows for marker gene-independent and antibiotic selection-free genome engineering with high precision in fruit trees to advance basic science as well as nontransgenic breeding programs.


Subject(s)
Endonucleases/genetics , Ficus/genetics , Genome, Plant/genetics , Malus/genetics , Mutagenesis, Site-Directed/methods , Ficus/enzymology , Fruit/enzymology , Fruit/genetics , Gene Expression , Genes, Reporter , Genomics , Malus/enzymology , Mutation , Plant Proteins/genetics , Plants, Genetically Modified , Sequence Alignment , Zinc Fingers/genetics
9.
Plant Cell Physiol ; 52(1): 70-83, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21071427

ABSTRACT

Chl, the central player in harvesting light energy for photosynthesis, is enzymatically degraded during natural turnover, leaf senescence, fruit ripening or following biotic/abiotic stress induction. The photodynamic properties of Chl and its metabolites call for tight regulation of the catabolic pathway enzymes to avoid accumulation of intermediate breakdown products. Chlorophyllase, the Chl dephytilation enzyme, was previously demonstrated to be an initiator of Chl breakdown when transcriptionally induced to be expressed during ethylene-induced citrus fruit color break or when heterologously expressed in different plant systems. Citrus chlorophyllase was previously shown to be translated as a precursor protein, which is subsequently post-translationally processed to a mature form. We demonstrate that maturation of citrus chlorophyllase involves dual N- and C-terminal processing which appear to be rate-limiting post-translational events when chlorophyllase expression levels are high. The chlorophyllase precursor and intermediate forms were shown to be of transient nature, while the mature form accumulates over time, suggesting that processing may be involved in post-translational regulation of enzyme in vivo function. This notion is further supported by the finding that neither N- nor C-terminal processed domains are essential for chloroplast targeting of the enzyme, and that both processing events occur within the chloroplast membranes. Studies on the processing of chlorophyllase versions truncated at the N- or C-termini or mutated to abolish C-terminal processing suggest that each of the processing events is independent. Dual N- and C-terminal processing, not involving an organellar targeting signal, has rarely been documented in plants and is unique for a plastid protein.


Subject(s)
Carboxylic Ester Hydrolases/metabolism , Citrus/chemistry , Plastids/enzymology , Amino Acid Sequence , Carboxylic Ester Hydrolases/chemistry , Mass Spectrometry , Molecular Sequence Data , Protein Processing, Post-Translational
10.
Plant Mol Biol ; 74(1-2): 33-45, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20521085

ABSTRACT

Post-translational modification of target proteins by the small ubiquitin-like modifier protein (SUMO) regulate many cellular processes. In this work we show SUMOylation of the heat shock transcription factor, AtHsfA2, in connection with the plant's response to heat stress and acquired thermotolerance. Using the Yeast two hybrid and the bimolecular fluorescence complementation system, we have found that AtSUMO1 physically interacts with AtHsfA2. Further investigation allowed us to determine that Lys 315 of AtHsfA2 is the main SUMOylation site. Overexpression of AtSUMO1 led to a decrease in AtHsfA2 transcriptional activation of heat shock promoters. We have examined the effect of AtSUMO1 on AtHsfA2 during heat shock treatments. The phenotype of seedlings overexpressing AtSUMO1 resembled the phenotype of AtHsfA2 knock out seedlings, which were more sensitive than wild type seedlings to repeated heat treatment. Furthermore, AtSUMO1 overexpressing seedlings exhibited lower expression levels of small heat shock proteins as compared with wild type seedlings after heat treatment. Based on our findings, we suggest that AtSUMO1 is involved in the regulation of AtHsfA2 in acquired thermotolerance.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , DNA-Binding Proteins/metabolism , Heat-Shock Proteins/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , Arabidopsis Proteins/chemistry , Base Sequence , DNA Primers/genetics , DNA, Plant/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant , Gene Knockout Techniques , Genes, Plant , Heat Shock Transcription Factors , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/genetics , Heat-Shock Response/genetics , Hot Temperature , Lysine/chemistry , Mutagenesis, Site-Directed , Phenotype , Plant Proteins/chemistry , Plant Proteins/genetics , Plants, Genetically Modified , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Seedlings/genetics , Seedlings/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Two-Hybrid System Techniques
11.
Plant Mol Biol ; 72(1-2): 191-203, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19876748

ABSTRACT

The ROF2 (FKBP65) is a heat stress protein which belongs to the FK506 Binding Protein (FKBP) family. It is homologous to ROF1 (FKBP62) which was recently shown to be involved in long term acquired thermotolerance by its interaction with HSP90.1 and modulation of the heat shock transcription factor HsfA2. In this study, we have demonstrated that ROF2 participates in long term acquired thermolerance, its mode of action being different from ROF1. In the absence of ROF2, the small heat shock proteins were highly expressed and the plants were resistant to heat stress, opposite to the effect observed in the absence of ROF1. It was further demonstrated that ROF2 transcription is modulated by HsfA2 which is also essential for keeping high levels of ROF2 during recovery from heat stress. ROF2 localization to the nucleus was observed several hours after heat stress exposure and its translocation to the nucleus was independent from the presence of HSP90.1 or HsfA2. ROF2 has been shown to interact with ROF1, to form heterodimers and it is suggested that via this interaction it can join the complex ROF1-HSP90.1- HsfA2. Transient expression of ROF2 together with ROF1 repressed transcription of small HSPs. A model describing the mode of action of ROF2 as a heat stress modulator which functions in negative feedback regulation of HsfA2 is proposed.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/physiology , Gene Expression Regulation, Plant/physiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Blotting, Western , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/physiology , Electrophoresis, Polyacrylamide Gel , Fluorometry , Gene Expression Regulation, Plant/genetics , Heat Shock Transcription Factors , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/physiology , Hot Temperature , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/physiology , Reverse Transcriptase Polymerase Chain Reaction , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Tacrolimus Binding Proteins/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/physiology , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...