Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 30(23): e202303921, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38354298

ABSTRACT

Aggregated α-synuclein (α-syn) protein is a pathological hallmark of Parkinson's disease (PD) and Lewy body dementia (LBD). Development of positron emission tomography (PET) radiotracers to image α-syn aggregates has been a longstanding goal. This work explores the suitability of a pyridothiophene scaffold for α-syn PET radiotracers, where 47 derivatives of a potent pyridothiophene (asyn-44; Kd=1.85 nM) were synthesized and screened against [3H]asyn-44 in competitive binding assays using post-mortem PD brain homogenates. Equilibrium inhibition constant (Ki) values of the most potent compounds were determined, of which three had Ki's in the lower nanomolar range (12-15 nM). An autoradiography study confirmed that [3H]asyn-44 is promising for imaging brain sections from multiple system atrophy and PD donors. Fluorine-18 labelled asyn-44 was synthesized in 6±2 % radiochemical yield (decay-corrected, n=5) with a molar activity of 263±121 GBq/µmol. Preliminary PET imaging of [18F]asyn-44 in rats showed high initial brain uptake (>1.5 standardized uptake value (SUV)), moderate washout (~0.4 SUV at 60 min), and low variability. Radiometabolite analysis showed 60-80 % parent tracer in the brain after 30 and 60 mins. While [18F]asyn-44 displayed good in vitro properties and acceptable brain uptake, troublesome radiometabolites precluded further PET imaging studies. The synthesis and in vitro evaluation of additional pyridothiophene derivatives are underway, with the goal of attaining improved affinity and metabolic stability.

2.
Chem Rec ; 23(9): e202300072, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37183954

ABSTRACT

Positron emission tomography (PET) is a powerful imaging tool for drug discovery, clinical diagnosis, and monitoring of disease progression. Fluorine-18 is the most common radionuclide used for PET, but advances in radiotracer development have been limited by the historical lack of methodologies and precursors amenable to radiolabeling with fluorine-18. Radiolabeling of electron-rich (hetero)aromatic rings remains a long-standing challenge in the production of PET radiopharmaceuticals. In this personal account, we discuss the history of spirocyclic iodonium ylide precursors, from inception to applications in clinical research, for the incorporation of fluorine-18 into complex non-activated (hetero)aromatic rings.


Subject(s)
Fluorine Radioisotopes , Radiopharmaceuticals , Positron-Emission Tomography/methods , Drug Discovery
3.
Molecules ; 28(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36770596

ABSTRACT

Positron emission tomography (PET) is a molecular imaging technique that makes use of radiolabelled molecules for in vivo evaluation. Carbon-11 is a frequently used radionuclide for the labelling of small molecule PET tracers and can be incorporated into organic molecules without changing their physicochemical properties. While the short half-life of carbon-11 (11C; t½ = 20.4 min) offers other advantages for imaging including multiple PET scans in the same subject on the same day, its use is limited to facilities that have an on-site cyclotron, and the radiochemical transformations are consequently more restrictive. Many researchers have embraced this challenge by discovering novel carbon-11 radiolabelling methodologies to broaden the synthetic versatility of this radionuclide. This review presents new carbon-11 building blocks and radiochemical transformations as well as PET tracers that have advanced to first-in-human studies over the past five years.


Subject(s)
Positron-Emission Tomography , Radioisotopes , Humans , Radioisotopes/chemistry , Carbon Radioisotopes/chemistry , Radiopharmaceuticals/chemistry , Radiochemistry/methods
4.
J Labelled Comp Radiopharm ; 66(9): 205-221, 2023 07.
Article in English | MEDLINE | ID: mdl-36815704

ABSTRACT

Positron emission tomography (PET) is a powerful tool for imaging biological processes in the central nervous system (CNS). Designing PET radiotracers capable of crossing the blood-brain barrier (BBB) remains a major challenge. In addition to being brain-penetrant, a quantifiable CNS PET radiotracer must have high target affinity and selectivity, appropriate pharmacokinetics, minimal non-specific binding, negligible radiometabolites in the brain, and generally must be amenable to labeling with carbon-11 (11 C) or fluorine-18 (18 F). This review aims to give an overview of some of the critical physicochemical and biochemical contributors specific for CNS PET radiotracer design and how they can differ from pharmaceutical drug development, including in vitro assays, in silico predictions, and in vivo studies, with examples for how such methods can be implemented to optimize brain uptake of radiotracers based on experiences from our neuroimaging program.


Subject(s)
Blood-Brain Barrier , Positron-Emission Tomography , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/metabolism , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/metabolism , Fluorine Radioisotopes/metabolism , Neuroimaging , Biological Transport , Radiopharmaceuticals/metabolism
5.
Nucl Med Biol ; 102-103: 97-105, 2021.
Article in English | MEDLINE | ID: mdl-34743064

ABSTRACT

INTRODUCTION: Parathyroid hyperplasia is a disease characterized by overactive parathyroid glands secreting increased levels of parathyroid hormone. Surgical removal of the parathyroid glands is the standard treatment but requires precise pre-operative localization of the glands. However, currently available imaging modalities show limited sensitivity. Since positron emission tomography (PET) is a molecular imaging technique with high accuracy and sensitivity, our aim was to develop a new PET tracer for overactive parathyroid glands imaging by radiolabelling cinacalcet, a drug binding to the calcium-sensing receptor of the parathyroid glands. METHODS: [18F]Cinacalcet was synthesized by copper-catalysed [18F]trifluoromethylation of a boronic acid precursor using high molar activity [18F]fluoroform. Ex vivo biodistribution and metabolism were evaluated in 12 healthy male Wistar rats at 5, 15, 45 and 90 min. PET scans were performed at baseline and after blocking with NPS R-568. RESULTS: [18F]Cinacalcet was obtained in an overall radiosynthesis time of 1 h with a radiochemical purity of 98 ± 1%, a radiochemical yield of 8 ± 4% (overall, n = 7, corrected for decay) and a molar activity of 40 ± 11 GBq/µmol (n = 7, at EOS). The ex vivo biodistribution showed uptake in the thyroid and parathyroid glands as well as in other glands such as adrenals, salivary glands and pancreas. The tracer was rapidly cleared from the blood via liver and kidneys and showed fast metabolism. PET images confirmed uptake in the target organ. However, in a blocking study with NPS R-568 specific binding of [18F]cinacalcet to the CaSR could not be confirmed. CONCLUSIONS: [18F]Cinacalcet was successfully synthesized. First in vivo experiments in healthy rats showed uptake of the tracer in the target organ and fast metabolism, encouraging further in vivo evaluation of this tracer.


Subject(s)
Cinacalcet
6.
J Labelled Comp Radiopharm ; 64(12): 466-476, 2021 10.
Article in English | MEDLINE | ID: mdl-34382259

ABSTRACT

The trifluoromethyl group is a prominent motif in biologically active compounds and therefore of great interest for the labeling with the positron emitter fluorine-18 for positron emission tomography (PET) imaging. Multiple labeling strategies have been explored in the past; however, most of them suffer from low molar activity due to precursor degradation. In this study, the potential of 1-(difluoromethyl)-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium triflate as precursor for the synthesis of the [18 F]trifluoromethylation building block [18 F]fluoroform with high molar activity was investigated. The triazolium precursor was reacted under various conditions with [18 F]fluoride, providing [18 F]fluoroform with radiochemical yields (RCY) and molar activities (Am ) comparable and even superior with already existing methods. Highest molar activities (Am = 153 ± 14 GBq/µmol, dc, EOS) were observed for the automated procedure on the Neptis® perform module. Due to its easy handling and good RCY and Am in the [18 F]fluoroform synthesis, the triazolium precursor is a valuable alternative to already known precursors.


Subject(s)
Radiopharmaceuticals
7.
Chem Commun (Camb) ; 57(43): 5286-5289, 2021 May 27.
Article in English | MEDLINE | ID: mdl-33942818

ABSTRACT

This article describes the first synthesis and application of fluorine-18 labelled Ruppert-Prakash reagent [18F]Me3SiCF3. [18F]Me3SiCF3 was synthesized from [18F]fluoroform with radiochemical yields of 85-95% and radiochemical purities of >95% within 20 minutes. 18F-trifluoromethylated compounds were successfully prepared by reaction of [18F]Me3SiCF3 with benzaldehydes, acetophenones and benzophenones.

8.
PLoS Negl Trop Dis ; 11(7): e0005761, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28759602

ABSTRACT

Ensuring the adequacy of response to rabies vaccination in dogs is important, particularly in the context of pet travel. Few studies have examined the factors associated with dogs' failure to achieve an adequate antibody titer after vaccination (0.5 IU/ml). This study evaluated rabies antibody titers in dogs after primary vaccination. Dogs under one year of age whose serum was submitted to a reference laboratory for routine diagnostics, and which had no prior documented history of vaccination were enrolled (n = 8,011). Geometric mean titers (GMT) were calculated and univariate analysis was performed to assess factors associated with failure to achieve 0.5 IU/mL. Dogs vaccinated at >16 weeks of age had a significantly higher GMT compared to dogs vaccinated at a younger age (1.64 IU/ml, 1.57-1.72, ANOVA p < 0.01). There was no statistical difference in GMT between dogs vaccinated <12 weeks and dogs vaccinated 12-16 weeks (1.22 IU/ml and 1.21 IU/ml). The majority of dogs failed to reach an adequate titer within the first 3 days of primary vaccination; failure rates were also high if the interval from vaccination to titer check was greater than 90 days. Over 90% of dogs that failed primary vaccination were able to achieve adequate titers after booster vaccination. The ideal timing for blood draw is 8-30 days after primary vaccination. In the event of a failure, most dogs will achieve an adequate serologic response upon a repeat titer (in the absence of booster vaccination). Booster vaccination after failure provided the highest probability of an acceptable titer.


Subject(s)
Antibodies, Viral/blood , Antibody Formation , Dog Diseases/prevention & control , Rabies Vaccines/administration & dosage , Rabies/veterinary , Animals , Dog Diseases/immunology , Dog Diseases/virology , Dogs , Female , Immunization, Secondary , Linear Models , Male , Multivariate Analysis , Rabies/immunology , Rabies/prevention & control , Risk Factors , Time Factors , United States
9.
Chem Soc Rev ; 46(15): 4709-4773, 2017 Jul 31.
Article in English | MEDLINE | ID: mdl-28608906

ABSTRACT

Positron emission tomography (PET) is an important driver for present day healthcare. Fluorine-18 is the most widely used radioisotope for PET imaging and a thorough overview of the available radiochemistry methodology is a prerequisite for selection of a synthetic approach for new fluorine-18 labelled PET tracers. These PET tracers can be synthesised either by late-stage radiofluorination, introducing fluorine-18 in the last step of the synthesis, or by a building block approach (also called modular build-up approach), introducing fluorine-18 in a fast and efficient manner in a building block, which is reacted further in one or multiple reaction steps to form the PET tracer. This review presents a comprehensive overview of the synthesis and application of fluorine-18 labelled building blocks since 2010.


Subject(s)
Positron-Emission Tomography , Radiopharmaceuticals/chemical synthesis , Fluorine Radioisotopes , Molecular Structure , Radiopharmaceuticals/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...