Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Forensic Sci Int ; 259: 110-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26773221

ABSTRACT

External contamination can cause false positive results in forensic hair testing for drugs of abuse and is therefore a major concern when hair evidence is used in court. Current literature about decontamination strategies is mainly focused on external cocaine contamination and no consensus on the best decontamination procedure for hair samples containing cannabinoids has been reached so far. In this study, different protocols with solvents, both organic as well as aqueous, were tested on blank and drug user hair for their performance on removing external cannabis contamination originating from either smoke or indirect contact with cannabis plant material. Smoke contamination was mimicked by exposing hair samples to smoke from a cannabis cigarette and indirect contact contamination by handling hair with cannabis contaminated gloves or hands. Δ9-tetrahydrocannabinol (THC) levels in the hair samples and wash solvents were determined using liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Aqueous surfactant solutions removed more THC contamination compared to water, but much less than organic solvents. Methanol, dichloromethane and chloroform were most efficient in removing THC contamination. Due to its lower environmental impact, methanol was chosen as the preferred decontamination solvent. After testing of different sequential wash steps on externally contaminated blank hair, three protocols performed equally well, removing all normal level and more than 99% of unrealistically high levels of external cannabis contamination. Thorough testing on cannabis users' hair, both as such and after deliberate contamination, showed that using these protocols all contamination could be washed from the hair while no incorporated THC was removed from truly positive samples. The present study provides detailed scientific evidence in support of the recommendations of the Society of Hair Testing: a protocol using a single methanol wash followed by a single aqueous SDS solution wash, followed by a Milli-Q water rinsing step, is suggested as the preferred decontamination protocol to remove external cannabis contamination from hair while preserving the incorporated compounds.


Subject(s)
Decontamination/methods , Dronabinol/analysis , Forensic Toxicology/methods , Hair/chemistry , Methanol , Sodium Dodecyl Sulfate , Chromatography, Liquid , Evidence-Based Medicine , Humans , Mass Spectrometry , Microscopy, Electron , Solvents , Surface-Active Agents
2.
J Agric Food Chem ; 63(2): 493-9, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25537490

ABSTRACT

In agriforensics, time of administration is often debated when illegal drug residues, such as clenbuterol, are found in frequently traded cattle. In this proof-of-concept work, the feasibility of obtaining retrospective timeline information from segmented calf tail hair analyses has been studied. First, an ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) hair analysis method was adapted to accommodate smaller sample sizes and in-house validated. Then, longitudinal 1 cm segments of calf tail hair were analyzed to obtain clenbuterol concentration profiles. The profiles found were in good agreement with calculated, theoretical positions of the clenbuterol residues along the hair. Following assessment of the average growth rate of calf tail hair, time of clenbuterol administration could be retrospectively determined from segmented hair analysis data. The data from the initial animal treatment study (n = 2) suggest that time of treatment can be retrospectively estimated with an error of 3-17 days.


Subject(s)
Adrenergic beta-Agonists/analysis , Cattle/growth & development , Chromatography, High Pressure Liquid/methods , Clenbuterol/analysis , Growth Substances/analysis , Hair/chemistry , Tandem Mass Spectrometry/methods , Veterinary Drugs/analysis , Animals , Drug Residues/analysis , Retrospective Studies , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...