Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37425722

ABSTRACT

The genome engineering capability of the CRISPR/Cas system depends on the DNA repair machinery to generate the final outcome. Several genes can have an impact on mutations created, but their exact function and contribution to the result of the repair are not completely characterised. This lack of knowledge has limited the ability to comprehend and regulate the editing outcomes. Here, we measure how the absence of 21 repair genes changes the mutation outcomes of Cas9-generated cuts at 2,812 synthetic target sequences in mouse embryonic stem cells. Absence of key non-homologous end joining genes Lig4, Xrcc4, and Xlf abolished small insertions and deletions, while disabling key microhomology-mediated repair genes Nbn and Polq reduced frequency of longer deletions. Complex alleles of combined insertion and deletions were preferentially generated in the absence of Xrcc6. We further discover finer structure in the outcome frequency changes for single nucleotide insertions and deletions between large microhomologies that are differentially modulated by the knockouts. We use the knowledge of the reproducible variation across repair milieus to build predictive models of Cas9 editing results that outperform the current standards. This work improves our understanding of DNA repair gene function, and provides avenues for more precise modulation of CRISPR/Cas9-generated mutations.

2.
Nat Biotechnol ; 41(10): 1446-1456, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36797492

ABSTRACT

Most short sequences can be precisely written into a selected genomic target using prime editing; however, it remains unclear what factors govern insertion. We design a library of 3,604 sequences of various lengths and measure the frequency of their insertion into four genomic sites in three human cell lines, using different prime editor systems in varying DNA repair contexts. We find that length, nucleotide composition and secondary structure of the insertion sequence all affect insertion rates. We also discover that the 3' flap nucleases TREX1 and TREX2 suppress the insertion of longer sequences. Combining the sequence and repair features into a machine learning model, we can predict relative frequency of insertions into a site with R = 0.70. Finally, we demonstrate how our accurate prediction and user-friendly software help choose codon variants of common fusion tags that insert at high efficiency, and provide a catalog of empirically determined insertion rates for over a hundred useful sequences.


Subject(s)
DNA Repair , DNA Transposable Elements , Humans , DNA Repair/genetics , Gene Editing , CRISPR-Cas Systems
3.
Nucleic Acids Res ; 50(6): 3551-3564, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35286377

ABSTRACT

CRISPR/Cas base editors promise nucleotide-level control over DNA sequences, but the determinants of their activity remain incompletely understood. We measured base editing frequencies in two human cell lines for two cytosine and two adenine base editors at ∼14 000 target sequences and find that base editing activity is sequence-biased, with largest effects from nucleotides flanking the target base. Whether a base is edited depends strongly on the combination of its position in the target and the preceding base, acting to widen or narrow the effective editing window. The impact of features on editing rate depends on the position, with sequence bias efficacy mainly influencing bases away from the center of the window. We use these observations to train a machine learning model to predict editing activity per position, with accuracy ranging from 0.49 to 0.72 between editors, and with better generalization across datasets than existing tools. We demonstrate the usefulness of our model by predicting the efficacy of disease mutation correcting guides, and find that most of them suffer from more unwanted editing than pure outcomes. This work unravels the position-specificity of base editing biases and allows more efficient planning of editing campaigns in experimental and therapeutic contexts.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Adenine , Cytosine/metabolism , Humans , Nucleotides
4.
Sci Rep ; 9(1): 19926, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882941

ABSTRACT

We have previously developed efficient peptide-based nucleic acid delivery vectors PF14 and NF55, where we have shown that these vectors preferentially transfect lung tissue upon systemic administration with the nucleic acid. In the current work, we have explored the utilization and potential of these vectors for the lung-targeted gene therapy. Accordingly, we assessed the efficacy of these peptides in (i) two different lung disease models - acute lung inflammation and asthma in mice and (ii) using two different nucleic acid cargos - siRNA and pDNA encoding shRNA. Using RNAi against cytokine TNFα, we showed efficient anti-inflammatory effects in both disease models and observed decreased disease symptoms. Our results highlight the potential of our transfection vectors for lung gene therapy.


Subject(s)
Asthma/metabolism , Inflammation/metabolism , Lung/metabolism , Nucleic Acids/metabolism , RNA Interference/physiology , Animals , Asthma/immunology , Asthma/therapy , Female , Genetic Therapy , Inflammation/immunology , Inflammation/therapy , Male , Mice , Polymerase Chain Reaction
5.
Sci Rep ; 7(1): 17056, 2017 12 06.
Article in English | MEDLINE | ID: mdl-29213085

ABSTRACT

Non-viral gene delivery systems have gained considerable attention as a promising alternative to viral delivery to treat diseases associated with aberrant gene expression. However, regardless of extensive research, only a little is known about the parameters that underline in vivo use of the nanoparticle-based delivery vectors. The modest efficacy and low safety of non-viral delivery are the two central issues that need to be addressed. We have previously characterized an efficient cell penetrating peptide, PF14, for in vivo applications. In the current work, we first develop an optimized formulation of PF14/pDNA nanocomplexes, which allows removal of the side-effects without compromising the bioefficacy in vivo. Secondly, based on the physicochemical complex formation studies and biological efficacy assessments, we develop a series of PF14 modifications with altered charge and fatty acid content. We show that with an optimal combination of overall charge and hydrophobicity in the peptide backbone, in vivo gene delivery can be augmented. Further combined with the safe formulation, systemic gene delivery lacking any side effects can be achieved.


Subject(s)
Cell-Penetrating Peptides/genetics , Fatty Acids/chemistry , Lipopeptides/genetics , Transfection/methods , Animals , CHO Cells , Cell-Penetrating Peptides/chemistry , Cricetinae , Cricetulus , Dynamic Light Scattering , Female , Fluorescent Dyes/chemistry , Lipopeptides/chemistry , Lung/metabolism , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...