Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mar Environ Res ; 141: 88-99, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30115533

ABSTRACT

Biogenic habitats play important roles in shallow-water ecosystems, but their roles in deeper waters are less well-studied. We quantitatively assessed 19 glass sponge reefs in the Salish Sea for live reef-building sponge cover and biodiversity, explored potential drivers behind variation observed among reefs, and quantified individual and collective roles the reefs play in filtration and carbon removal. The reefs support diverse and abundant communities of invertebrates and fish, with 115 unique taxonomic groups observed. Sponge cover varied widely between reefs: percent live reef-building sponge cover ranged from 0.2 to 17.5% and proportion of live reef habitat category ranged from 0.2 to 92%. These differences were predominantly driven by the seabed terrain characteristics such as seafloor rugosity, curvature, and depth; human pressure measures explored in this study - density of anthropogenic objects and fishing footprint over the past 17 years - did not mask the natural influence of seabed terrain. The difference in sponge cover between the reefs led to wide variation in ecosystem function with individual reefs processing between 465 and 47,300 L/m2 per day. Collectively, each day the 19 reefs filter 1.04 × 1011 L of water which corresponds to 1% of the total water volume in Strait of Georgia and Howe Sound combined. The reefs remove up to 1 g of carbon per m2 per day, comparable to carbon sequestration rates reported for terrestrial old growth forests and to "blue carbon" sequestration rates by marine vegetation. Implications for sponge reef conservation and monitoring are discussed.


Subject(s)
Biodiversity , Ecology , Ecosystem , Animals , Coral Reefs , Human Activities , Humans , Invertebrates
2.
Mar Environ Res ; 107: 50-60, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25884466

ABSTRACT

We examined the effects of submarine power transmission cable installation and operation on glass sponge reef condition and associated megafauna. Video and still imagery were collected using a Remotely Operated Vehicle twice a year for 4 years following cable installation. The effects of cables on glass sponges were assessed by comparing sponge cover along fixed transects and at marked index sites. Megafauna counts along transects were used to explore the effects on associated community. We found no evidence of cable movement across the sponge reef surface. Live sponge cover was found to be consistently lower along cable transects and at cable index sites compared to controls. Live sponge cover was the lowest (55 ± 1.1% decrease) at cable index sites 1.5 years after installation and recovered to 85 ± 30.6% of the original size over the following 2 years. Our data suggest 100% glass sponge mortality along the direct cable footprint and 15% mortality in the surrounding 1.5 m corridor 3.5 years after cable installation. Growth rate of a new glass sponge was 1 and 3 cm/year in first and second year, respectively, and appeared to be seasonal. We observed a diverse megafaunal community with representatives from 7 phyla and 14 classes. Total megafauna, spot prawn, and other Arthropoda abundances were slightly lower along cable transects although the effect of cable presence was not statistically significant. The following measures could be taken to reduce the amount of damage to glass sponge reefs and associated fauna: routing the cable around reefs, whenever possible, minimizing cable movement across the surface of the reef at installation and routine operation, and assessing potential damage to glass sponges prior to decommissioning.


Subject(s)
Ecosystem , Invertebrates/physiology , Porifera/physiology , Animals , Biodiversity , Electric Power Supplies , Fishes , Population Density , Porifera/growth & development , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...