Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-22684055

ABSTRACT

The role of ADAM-8 in cancer and inflammatory diseases such as allergy, arthritis and asthma makes it an attractive target for drug development. Therefore, the catalytic domain of human ADAM-8 was expressed, purified and crystallized in complex with a hydroxamic acid inhibitor, batimastat. The crystal structure of the enzyme-inhibitor complex was refined to 2.1 Å resolution. ADAM-8 has an overall fold similar to those of other ADAM members, including a central five-stranded ß-sheet and a catalytic Zn(2+) ion. However, unique differences within the S1' binding loop of ADAM-8 are observed which might be exploited to confer specificity and selectivity to ADAM-8 competitive inhibitors for the treatment of diseases involving this enzyme.


Subject(s)
ADAM Proteins/chemistry , Catalytic Domain , Membrane Proteins/chemistry , Phenylalanine/analogs & derivatives , Protease Inhibitors/chemistry , Thiophenes/chemistry , ADAM Proteins/metabolism , Humans , Ligands , Membrane Proteins/metabolism , Models, Molecular , Phenylalanine/chemistry , Phenylalanine/metabolism , Protease Inhibitors/metabolism , Protein Binding , Protein Unfolding , Thiophenes/metabolism
2.
Protein Pept Lett ; 19(5): 485-91, 2012 May.
Article in English | MEDLINE | ID: mdl-22486643

ABSTRACT

The Janus kinase (JAK) family consists of four members: JAK-1, -2, -3 and tyrosine kinase 2 (TYK-2). Recent work suggests that cytokine signaling through TYK-2 may play a critical role in a number of inflammatory processes. We recently described the purification and characterization of phosphorylated isoforms of the TYK-2 kinase domain (TYK-2 KD) and its high resolution 3D structure in the presence of inhibitors. We now report the expression and a two-step purification procedure for the doubly tagged full-length construct, H6-FL-TYK-2-FLAG, and examine its properties compared to those of TYK-2 KD. In the presence of ATP and a peptide substrate, H6-FL-TYK-2-FLAG showed a marked lag in phosphopeptide product formation, while TYK-2 KD showed no such lag. This lag could be eliminated by ATP pretreatment, suggesting that the H6-FL-TYK-2-FLAG enzyme was activated by phosphorylation. The potencies of several nanomolar inhibitors were similar for TYK-2 KD and H6-FL-TYK-2-FLAG. However, these same inhibitors were about 1000 times less potent inhibiting the autophosphorylation of H6-FL-TYK-2-FLAG than they were inhibiting the phosphorylation of a peptide substrate modeled after the activation loop sequence of TYK-2. This intriguing result suggests that autophosphorylation and, thus, activation of H6-FL-TYK-2-FLAG is relatively insensitive to inhibition and that present inhibitors act to inhibit TYK-2 subsequent to activation. Inhibition of TYK-2 autophosphorylation may represent a new area of investigation for the JAK family.


Subject(s)
TYK2 Kinase/antagonists & inhibitors , TYK2 Kinase/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Catalytic Domain , Electrophoresis, Polyacrylamide Gel , Histidine/chemistry , Humans , Kinetics , Oligopeptides/chemistry , Phosphorylation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Recombinant Fusion Proteins/antagonists & inhibitors , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , TYK2 Kinase/chemistry , TYK2 Kinase/isolation & purification
3.
Nat Struct Mol Biol ; 18(2): 198-204, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21240271

ABSTRACT

Autotaxin (ATX, also known as ectonucleotide pyrophosphatase/phosphodiesterase-2, ENPP2) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemoattractant for many cell types. ATX-LPA signaling is involved in various pathologies including tumor progression and inflammation. However, the molecular basis of substrate recognition and catalysis by ATX and the mechanism by which it interacts with target cells are unclear. Here, we present the crystal structure of ATX, alone and in complex with a small-molecule inhibitor. We have identified a hydrophobic lipid-binding pocket and mapped key residues for catalysis and selection between nucleotide and phospholipid substrates. We have shown that ATX interacts with cell-surface integrins through its N-terminal somatomedin B-like domains, using an atypical mechanism. Our results define determinants of substrate discrimination by the ENPP family, suggest how ATX promotes localized LPA signaling and suggest new approaches for targeting ATX with small-molecule therapeutic agents.


Subject(s)
Integrins/metabolism , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/chemistry , Pyrophosphatases/metabolism , Amino Acid Sequence , Animals , Binding Sites , Catalytic Domain , Cell Line , Crystallography, X-Ray , Humans , Lysophospholipids/metabolism , Molecular Sequence Data , Mutation , Phosphoric Diester Hydrolases/genetics , Protein Binding , Protein Structure, Tertiary , Pyrophosphatases/genetics , Rats , Substrate Specificity
4.
Article in English | MEDLINE | ID: mdl-20823544

ABSTRACT

Rat autotaxin has been cloned, expressed, purified to homogeneity and crystallized via hanging-drop vapour diffusion using PEG 3350 as precipitant and ammonium iodide and sodium thiocyanate as salts. The crystals diffracted to a maximum resolution of 2.05 A and belonged to space group P1, with unit-cell parameters a=53.8, b=63.3, c=70.5 A, alpha=98.8, beta=106.2, gamma=99.8 degrees. Preliminary X-ray diffraction analysis indicated the presence of one molecule per asymmetric unit, with a solvent content of 47%.


Subject(s)
Phosphoric Diester Hydrolases/chemistry , Pyrophosphatases/chemistry , Animals , Crystallization , Crystallography, X-Ray , Rats
5.
J Pharmacol Exp Ther ; 334(1): 310-7, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20392816

ABSTRACT

Autotaxin is the enzyme responsible for the production of lysophosphatidic acid (LPA) from lysophosphatidyl choline (LPC), and it is up-regulated in many inflammatory conditions, including but not limited to cancer, arthritis, and multiple sclerosis. LPA signaling causes angiogenesis, mitosis, cell proliferation, and cytokine secretion. Inhibition of autotaxin may have anti-inflammatory properties in a variety of diseases; however, this hypothesis has not been tested pharmacologically because of the lack of potent inhibitors. Here, we report the development of a potent autotaxin inhibitor, PF-8380 [6-(3-(piperazin-1-yl)propanoyl)benzo[d]oxazol-2(3H)-one] with an IC(50) of 2.8 nM in isolated enzyme assay and 101 nM in human whole blood. PF-8380 has adequate oral bioavailability and exposures required for in vivo testing of autotaxin inhibition. Autotaxin's role in producing LPA in plasma and at the site of inflammation was tested in a rat air pouch model. The specific inhibitor PF-8380, dosed orally at 30 mg/kg, provided >95% reduction in both plasma and air pouch LPA within 3 h, indicating autotaxin is a major source of LPA during inflammation. At 30 mg/kg PF-8380 reduced inflammatory hyperalgesia with the same efficacy as 30 mg/kg naproxen. Inhibition of plasma autotaxin activity correlated with inhibition of autotaxin at the site of inflammation and in ex vivo whole blood. Furthermore, a close pharmacokinetic/pharmacodynamic relationship was observed, which suggests that LPA is rapidly formed and degraded in vivo. PF-8380 can serve as a tool compound for elucidating LPA's role in inflammation.


Subject(s)
Arthritis, Experimental/drug therapy , Benzoxazoles/pharmacology , Enzyme Inhibitors/pharmacology , Lysophospholipids/blood , Multienzyme Complexes/antagonists & inhibitors , Phosphodiesterase I/antagonists & inhibitors , Piperazines/pharmacology , Pyrophosphatases/antagonists & inhibitors , Animals , Arthritis, Experimental/enzymology , Benzoxazoles/pharmacokinetics , Benzoxazoles/therapeutic use , Cell Line , Cloning, Molecular , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Female , Humans , Hyperalgesia/drug therapy , Hyperalgesia/enzymology , Lysophospholipids/biosynthesis , Male , Mice , Molecular Structure , Multienzyme Complexes/blood , Phosphodiesterase I/blood , Phosphoric Diester Hydrolases , Piperazines/pharmacokinetics , Piperazines/therapeutic use , Pyrophosphatases/blood , Rats , Rats, Inbred Lew , Recombinant Proteins/antagonists & inhibitors
6.
Arch Biochem Biophys ; 491(1-2): 106-11, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19766586

ABSTRACT

A disintegrin and metalloprotease-8 (ADAM8) is thought to play a role in cancer and inflammatory diseases such as allergy, arthritis, and asthma. Despite the implication of ADAM8 in these diseases, the functional role of ADAM8 catalytic activity remains unclear. In this report, we demonstrate that an early critical autolytic event, we have termed pre-processing, is accelerated at acidic pH (pH 5.5) while autolytic activation is abrogated under the same conditions. Likewise, we found that pre-processing is hindered and autolytic activation is facilitated in neutral pH conditions, and thus demonstrates a pH-dependent shift in substrate selectivity. This finding is further supported by two peptide substrates corresponding to the pre-processing and C-terminal scissile bonds that were preferentially cleaved at acidic and neutral pH, respectively. Lastly, we found fibronectin cleavage to be attenuated at pH 5.5, while two novel substrates, brevican, and vitronectin, were readily cleaved in neutral or acidic conditions.


Subject(s)
ADAM Proteins/metabolism , Membrane Proteins/metabolism , Proteoglycans/metabolism , ADAM Proteins/chemistry , ADAM Proteins/genetics , ADAM Proteins/isolation & purification , Biocatalysis , Enzyme Activation , Extracellular Matrix Proteins/metabolism , Humans , Hydrogen-Ion Concentration , Kinetics , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/isolation & purification , Peptides/metabolism , Protein Structure, Tertiary , Substrate Specificity
7.
Biosci Rep ; 29(4): 217-28, 2009 Aug.
Article in English | MEDLINE | ID: mdl-18811590

ABSTRACT

Members of the ADAM (a disintegrin and metalloproteinase) family of proteins possess a multidomain architecture which permits functionalities as adhesion molecules, signalling intermediates and proteolytic enzymes. ADAM8 is found on immune cells and is induced by multiple pro-inflammatory stimuli suggesting a role in inflammation. Here we describe an activation mechanism for recombinant human ADAM8 that is independent from classical PC (pro-protein convertase)-mediated activation. N-terminal sequencing revealed that, unlike other ADAMs, ADAM8 undergoes pre-processing at Glu(158), which fractures the Pro (pro-segment)-domain before terminal activation takes place to remove the putative cysteine switch (Cys(167)). ADAM8 lacking the DIS (disintegrin) and/or CR (cysteine-rich) and EGF (epidermal growth factor) domains displayed impaired ability to complete this event. Thus pre-processing of the Pro-domain is co-ordinated by DIS and CR/EGF domains. Furthermore, by placing an EK (enterokinase) recognition motif between the Pro- and catalytic domains of multiple constructs, we were able to artificially remove the pro-segment prior to pre-processing. In the absence of pre-processing of the Pro-domain a marked decrease in specific activity was observed with the autoactivated enzyme, suggesting that the Pro-domain continued to associate and inhibit active enzyme. Thus, pre-processing of the Pro-domain of human ADAM8 is important for enzyme maturation by preventing re-association of the pro-segment with the catalytic domain. Given the observed necessity of DIS and CR/EGF for pre-processing, we conclude that these domains are crucial for the proper activation and maturation of human ADAM8.


Subject(s)
ADAM Proteins/metabolism , Membrane Proteins/metabolism , ADAM Proteins/chemistry , ADAM Proteins/genetics , ADAM Proteins/isolation & purification , Catalysis , Catalytic Domain , Enzyme Activation , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/isolation & purification , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Analysis, Protein
8.
Arch Biochem Biophys ; 444(1): 34-44, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16289022

ABSTRACT

ADAMTS-4 (aggrecanase 1) is synthesized as a latent precursor protein that may require activation through removal of its prodomain before it can exert catalytic activity. We examined various proteinases as well as auto-activation under a wide range of conditions for removal of the prodomain and induction of enzymatic activity. The proprotein convertases, furin, PACE4, and PC5/6 efficiently removed the prodomain through cleavage at Arg(212)/Phe(213), generating an active enzyme. Of a broad range of proteases evaluated, only MMP-9 and trypsin were capable of removing the prodomain. In the presence of mercuric compounds, removal of the prodomain through autocatalysis was not observed, nor was it observed at temperatures from 22 to 65 degrees C, at ionic strengths from 0.1 to 1M, or at acidic/neutral pH. At basic pH 8-10, removal of the prodomain by autocatalysis occurred, generating an active enzyme. In conclusion, the pro-form of ADAMTS-4 is not catalytically active and only a limited number of mechanisms mediate its N-terminal activation.


Subject(s)
ADAM Proteins/chemistry , Disintegrins/chemistry , Metalloproteases/chemistry , Procollagen N-Endopeptidase/chemistry , Proprotein Convertases/chemistry , Serine Endopeptidases/chemistry , ADAM Proteins/antagonists & inhibitors , ADAMTS4 Protein , Amino Acid Sequence , Animals , Enzyme Activation , Humans , Hydrogen-Ion Concentration , Molecular Sequence Data , Osmolar Concentration , Phenylmercury Compounds/chemistry , Procollagen N-Endopeptidase/antagonists & inhibitors , Recombinant Proteins/chemistry , Temperature
9.
Biotechnol Appl Biochem ; 37(Pt 1): 31-8, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12578549

ABSTRACT

One member of the progenipoietin (ProGP) family of engineered proteins, ProGP-2, is a chimaeric dual cytokine receptor agonist, expressed in mammalian cells, that stimulates both human fetal liver tyrosine kinase-3 (Flt3) and the granulocyte-colony-stimulating-factor (G-CSF) receptor. The production of ProGP-2 on a small and large scale using either anti-(Flt3 ligand) antibody-affinity chromatography, or a combination of (NH4)2SO4 fractionation, anion-exchange chromatography, hydrophobic-interaction chromatography and preparative reverse-phase chromatography is described. ProGP-2 was produced in hollow-fibre reactors containing stably transfected NS0 cells. The productivity of ProGP-2 was initially high, but was found to decrease 3-4-fold over time. When the yield of ProGP-2 decreased, the combination of three conventional chromatography steps was required to meet protein purity similar to that achieved by the anti-(Flt3 ligand) chromatography method. In addition, a protease activity was observed in conditioned media from the hollow-fibre reactors that resulted in increased degradation of ProGP-2 that was removed by hydrophobic-interaction chromatography at higher pH. Together the results demonstrated a method for production and purification of ProGP-2 for additional studies on its haematopoietic activity.


Subject(s)
Bioreactors , Chromatography/methods , Colony-Stimulating Factors/isolation & purification , Protein Engineering/methods , Animals , Cells, Cultured , Cloning, Molecular , Colony-Stimulating Factors/chemistry , Colony-Stimulating Factors/genetics , Cricetinae , Quality Control , Receptors, Granulocyte Colony-Stimulating Factor/agonists , Receptors, Granulocyte Colony-Stimulating Factor/biosynthesis , Receptors, Granulocyte Colony-Stimulating Factor/chemistry , Receptors, Granulocyte Colony-Stimulating Factor/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...