Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomedicine ; 40: 102488, 2022 02.
Article in English | MEDLINE | ID: mdl-34748964

ABSTRACT

The goal of this study was to evaluate hepatocyte-specific gene editing, via systemic administration of hyaluronic acid (HA)-based nanoparticles in naïve CD-1 mice. Using HA-poly(ethylene imine) (HA-PEI) and HA-PEI-mannose nanoparticles with differential mannose density (1X and 2X), we have evaluated systemic biodistribution and hepatocyte-specific delivery using IVIS imaging and flow cytometry. Additionally, we have investigated hepatocyte-specific delivery and transfection of CRISPR/Cas9 gene editing plasmid and eGFP gene payload to integrate at the Rosa26 locus. IVIS imaging showed uptake of HA-PEI nanoparticles primarily by the liver, and with addition of mannose at different concentrations, the nanoparticles showed increased uptake in both the liver and spleen. HA-PEI-mannose nanoparticles showed 55-65% uptake by hepatocytes, along with uptake by resident macrophage regardless of the mannose concentration. One of two gRNA targets showed 15% genome editing and obtained similar results for all three nanoparticle formulations. Cells positive for our gene payload were greatest with HA-PEI-mannose-1X nanoparticles where 16.2% of cells were GFP positive. The results were encouraging as proof of concept for the development of a non-viral biodegradable and biocompatible polymeric delivery system for gene editing specifically targeting hepatocytes upon systemic administration.


Subject(s)
Gene Editing , Nanoparticles , Animals , CRISPR-Cas Systems/genetics , Gene Editing/methods , Hepatocytes , Hyaluronic Acid , Mice , Tissue Distribution
2.
Metab Eng ; 54: 54-68, 2019 07.
Article in English | MEDLINE | ID: mdl-30851381

ABSTRACT

Chinese hamster ovary (CHO) cells in fed-batch cultures are known to consume large amounts of nutrients and divert significant portion of them towards the formation of byproducts, some of which, including lactate and ammonia, are known to be growth inhibitory in nature. A major fraction of these inhibitory metabolites are byproducts or intermediates of amino acid catabolism. Limiting the supply of amino acids has been shown to curtail the production of corresponding inhibitory byproducts resulting in enhanced growth and productivities in CHO cell fed-batch cultures (Mulukutla et al., 2017). In the current study, metabolic engineering of CHO cells was undertaken in order to reduce the biosynthesis of these novel growth inhibitors. Phenylalanine-tyrosine (Phe-Tyr) and branched chain amino acid (BCAA) catabolic pathways were engineered as part of this effort. Four genes that encode enzymes in the Phe-Tyr pathway, which were observed to be minimally expressed in CHO cells, were in turn overexpressed. Metabolically engineered cells were prototrophic to tyrosine and had reduced production of the inhibitory byproducts from Phe-Tyr pathway including 3-phenyllactate and 4-hydroxyphenyllactate. In case of BCAA catabolic pathway, branched chain aminotransferase 1 (BCAT1) gene, which encodes the enzyme that catalyzes the first step in the catabolism of BCAAs, was knocked out in CHO cells. Knockout (KO) of BCAT1 function completely eliminated production of inhibitory byproducts from BCAA catabolic pathway, including isovalerate, isobutyrate and 2-methylbutyrate, resulting in significantly enhanced cell growth and productivities in fed-batch cultures. This study is first of its kind to demonstrate that metabolic engineering of essential amino acid metabolism of CHO cells can significantly improve cell culture process performance.


Subject(s)
Batch Cell Culture Techniques , Growth Inhibitors/biosynthesis , Growth Inhibitors/genetics , Metabolic Engineering , Amino Acids/genetics , Amino Acids/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus
3.
J Med Chem ; 60(3): 1105-1125, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28001399

ABSTRACT

Current pain therapeutics suffer from undesirable psychotropic and sedative side effects, as well as abuse potential. Glycine receptors (GlyRs) are inhibitory ligand-gated ion channels expressed in nerves of the spinal dorsal horn, where their activation is believed to reduce transmission of painful stimuli. Herein, we describe the identification and hit-to-lead optimization of a novel class of tricyclic sulfonamides as allosteric GlyR potentiators. Initial optimization of high-throughput screening (HTS) hit 1 led to the identification of 3, which demonstrated ex vivo potentiation of glycine-activated current in mouse dorsal horn neurons from spinal cord slices. Further improvement of potency and pharmacokinetics produced in vivo proof-of-concept tool molecule 20 (AM-1488), which reversed tactile allodynia in a mouse spared-nerve injury (SNI) model. Additional structural optimization provided highly potent potentiator 32 (AM-3607), which was cocrystallized with human GlyRα3cryst to afford the first described potentiator-bound X-ray cocrystal structure within this class of ligand-gated ion channels (LGICs).


Subject(s)
Receptors, Glycine/agonists , Sulfonamides/pharmacology , Animals , HEK293 Cells , Humans , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL
4.
J Biotechnol ; 146(4): 186-93, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20156494

ABSTRACT

Gene amplification methodologies are frequently employed for the generation of large quantities of recombinant proteins in mammalian cells. Although they usually guarantee very high yields, they are very time consuming. In addition, due to the large genomic re-arrangements that frequently occur with amplification, the resulting high-producing clones can be unstable. We herein describe significant improvements to the dihydrofolate reductase (DHFR)/methotrexate (MTX) based gene amplification methodology typically employed to improve yields of recombinant proteins produced in genetically engineered CHO host cells. We demonstrate substantial synergy when such gene amplification is combined with extremely high codon optimisation strategies. As a result, expression saturation can be achieved rapidly, in as low as 5 nM MTX, with minimal effort and without compromise in final yields achieved.


Subject(s)
Codon , Gene Amplification , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Animals , CHO Cells , Cricetinae , Cricetulus , Gene Dosage , Methotrexate , Open Reading Frames , Recombinant Proteins/metabolism , Tetrahydrofolate Dehydrogenase
5.
J Virol ; 80(16): 8133-44, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16873269

ABSTRACT

The human herpesvirus Epstein-Barr virus (EBV) establishes latency and promotes the long-term survival of its host B cell by targeting the molecular machinery controlling cell fate decisions. The cellular antiapoptotic bfl-1 gene confers protection from apoptosis under conditions of growth factor deprivation when expressed ectopically in an EBV-negative Burkitt's lymphoma-derived cell line (B. D'Souza, M. Rowe, and D. Walls, J. Virol. 74:6652-6658, 2000), and the EBV latent membrane protein 1 (LMP1) and its cellular functional homologue CD40 can both drive bfl-1 via an NF-kappaB-dependent enhancer element in the bfl-1 promoter (B. N. D'Souza, L. C. Edelstein, P. M. Pegman, S. M. Smith, S. T. Loughran, A. Clarke, A. Mehl, M. Rowe, C. Gélinas, and D. Walls, J. Virol. 78:1800-1816, 2004). Here we show that the EBV nuclear antigen 2 (EBNA2) also upregulates bfl-1. EBNA2 trans-activation of bfl-1 requires CBF1 (or RBP-J kappa), a nuclear component of the Notch signaling pathway, and there is an essential role for a core consensus CBF1-binding site on the bfl-1 promoter. trans-activation is dependent on the EBNA2-CBF1 interaction, is modulated by other EBV gene products known to interact with the CBF1 corepressor complex, and does not involve activation of NF-kappaB. bfl-1 expression is induced and maintained at high levels by the EBV growth program in a lymphoblastoid cell line, and withdrawal of either EBNA2 or LMP1 does not lead to a reduction in bfl-1 mRNA levels in this context, whereas the simultaneous loss of both EBV proteins results in a major decrease in bfl-1 expression. These findings are relevant to our understanding of EBV persistence, its role in malignant disease, and the B-cell developmental process.


Subject(s)
Epstein-Barr Virus Nuclear Antigens/metabolism , Herpesvirus 4, Human/growth & development , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Transcriptional Activation , Antigens, Viral/genetics , Apoptosis/genetics , B-Lymphocytes/virology , Base Sequence , Binding Sites , Cells, Cultured , Epstein-Barr Virus Nuclear Antigens/genetics , Humans , Minor Histocompatibility Antigens , Molecular Sequence Data , Promoter Regions, Genetic , RNA, Messenger/analysis , RNA, Messenger/metabolism , Receptors, Notch/metabolism , Repressor Proteins/metabolism , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Viral Proteins
6.
J Virol ; 78(4): 1800-16, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14747545

ABSTRACT

Suppression of the cellular apoptotic program by the oncogenic herpesvirus Epstein-Barr virus (EBV) is central to both the establishment of latent infection and the development of EBV-associated malignancies. We have previously shown that expression of the EBV latent membrane protein 1 (LMP1) in Burkitt's lymphoma cell lines leads to increased mRNA levels from the cellular antiapoptotic bfl-1 gene (also known as A1). Furthermore, ectopic expression of Bfl-1 in an EBV-positive cell line exhibiting a latency type 1 infection protects against apoptosis induced by growth factor deprivation (B. N. D'Souza, M. Rowe, and D. Walls, J. Virol. 74:6652-6658, 2000). We now report that LMP1 drives bfl-1 promoter activity through interactions with components of the tumor necrosis factor receptor (TNFR)/CD40 signaling pathway. We present evidence that this process is NF-kappa B dependent, involves the recruitment of TNFR-associated factor 2, and is mediated to a greater extent by the carboxyl-terminal activating region 2 (CTAR2) relative to the CTAR1 domain of LMP1. Activation of CD40 receptor also led to increased bfl-1 mRNA levels and an NF-kappa B-dependent increase in bfl-1 promoter activity in Burkitt's lymphoma-derived cell lines. We have delineated a 95-bp region of the promoter that functions as an LMP1-dependent transcriptional enhancer in this cellular context. This sequence contains a novel NF-kappa B-like binding motif that is essential for transactivation of bfl-1 by LMP1, CD40, and the NF-kappa B subunit protein p65. These findings highlight the role of LMP1 as a mediator of EBV-host cell interactions and may indicate an important route by which it exerts its cellular growth transforming properties.


Subject(s)
CD40 Antigens/metabolism , Herpesvirus 4, Human/physiology , NF-kappa B/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Up-Regulation , Viral Matrix Proteins/metabolism , Animals , B-Lymphocytes , Burkitt Lymphoma , Cell Line, Transformed , Cell Line, Tumor , Gene Expression Regulation , Herpesvirus 4, Human/pathogenicity , Humans , L Cells , Mice , Minor Histocompatibility Antigens
SELECTION OF CITATIONS
SEARCH DETAIL
...