Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Ann Bot ; 131(5): 789-800, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36794926

ABSTRACT

BACKGROUND AND AIMS: The existence of sclerophyllous plants has been considered an adaptive strategy against different environmental stresses. Given that it literally means 'hard-leaved', it is essential to quantify the leaf mechanical properties to understand sclerophylly. However, the relative importance of each leaf trait for mechanical properties is not yet well established. METHODS: Genus Quercus is an excellent system to shed light on this because it minimizes phylogenetic variation while having a wide variation in sclerophylly. We measured leaf anatomical traits and cell wall composition, analysing their relationship with leaf mass per area and leaf mechanical properties in a set of 25 oak species. KEY RESULTS: The upper epidermis outer wall makes a strong and direct contribution to the leaf mechanical strength. Moreover, cellulose plays a crucial role in increasing leaf strength and toughness. The principal component analysis plot based on leaf trait values clearly separates Quercus species into two groups corresponding to evergreen and deciduous species. CONCLUSIONS: Sclerophyllous Quercus species are tougher and stronger owing to their thicker epidermis outer wall and/or higher cellulose concentration. Furthermore, section Ilex species share common traits, although they occupy different climates. In addition, evergreen species living in mediterranean-type climates share common leaf traits irrespective of their different phylogenetic origin.


Subject(s)
Quercus , Phylogeny , Plant Leaves/chemistry , Climate , Cellulose
2.
Tree Physiol ; 42(10): 1988-2002, 2022 10 07.
Article in English | MEDLINE | ID: mdl-35451029

ABSTRACT

Leaves of Mediterranean evergreen tree species experience a reduction in net CO2 assimilation (AN) and mesophyll conductance to CO2 (gm) during aging and senescence, which would be influenced by changes in leaf anatomical traits at cell level. Anatomical modifications can be accompanied by the dismantling of photosynthetic apparatus associated to leaf senescence, manifested through changes at the biochemical level (i.e., lower nitrogen investment in photosynthetic machinery). However, the role of changes in leaf anatomy at cell level and nitrogen content in gm and AN decline experienced by old non-senescent leaves of evergreen trees with long leaf lifespan is far from being elucidated. We evaluated age-dependent changes in morphological, anatomical, chemical and photosynthetic traits in Quercus ilex subsp. rotundifolia Lam., an evergreen oak with high leaf longevity. All photosynthetic traits decreased with increasing leaf age. The relative change in cell wall thickness (Tcw) was less than in chloroplast surface area exposed to intercellular air space (Sc/S), and Sc/S was a key anatomical trait explaining variations in gm and AN among different age classes. The reduction of Sc/S was related to ultrastructural changes in chloroplasts associated to leaf aging, with a concomitant reduction in cytoplasmic nitrogen. Changes in leaf anatomy and biochemistry were responsible for the age-dependent modifications in gm and AN. These findings revealed a gradual physiological deterioration related to the dismantling of the photosynthetic apparatus in older leaves of Q. ilex subsp. rotundifolia.


Subject(s)
Quercus , Carbon Dioxide/metabolism , Mesophyll Cells/physiology , Nitrogen/metabolism , Photosynthesis/physiology , Plant Leaves/physiology , Quercus/physiology , Trees/metabolism
3.
New Phytol ; 230(2): 521-534, 2021 04.
Article in English | MEDLINE | ID: mdl-33340114

ABSTRACT

Increases in leaf mass per area (LMA) are commonly observed in response to environmental stresses and are achieved through increases in leaf thickness and/or leaf density. Here, we investigated how the two underlying components of LMA differ in relation to species native climates and phylogeny, across deciduous and evergreen species. Using a phylogenetic approach, we quantified anatomical, compositional and climatic variables from 40 deciduous and 45 evergreen Quercus species from across the Northern Hemisphere growing in a common garden. Deciduous species from shorter growing seasons tended to have leaves with lower LMA and leaf thickness than those from longer growing seasons, while the opposite pattern was found for evergreens. For both habits, LMA and thickness increased in arid environments. However, this shift was associated with increased leaf density in evergreens but reduced density in deciduous species. Deciduous and evergreen oaks showed fundamental leaf morphological differences that revealed a diverse adaptive response. While LMA in deciduous species may have diversified in tight coordination with thickness mainly modulated by aridity, diversification of LMA within evergreens appears to be dependent on the infrageneric group, with diversification in leaf thickness modulated by both aridity and cold, while diversification in leaf density is only modulated by aridity.


Subject(s)
Quercus , Phylogeny , Plant Leaves , Seasons
4.
Front Plant Sci ; 12: 786933, 2021.
Article in English | MEDLINE | ID: mdl-35140730

ABSTRACT

The search for a universal explanation of the altitudinal limit determined by the alpine treeline has given rise to different hypotheses. In this study, we revisited Michaelis' hypothesis which proposed that an inadequate "ripening" of the cuticle caused a greater transpiration rate during winter in the treeline. However, few studies with different explanations have investigated the role of passive mechanisms of needles for protecting against water loss during winter in conifers at the treeline. To shed light on this, the cuticular transpiration barrier was studied in the transition from subalpine Pinus uncinata forests to alpine tundra at the upper limit of the species in the Pyrenees. This upper limit of P. uncinata was selected here as an example of the ecotones formed by conifers in the temperate mountains of the northern hemisphere. Our study showed that minimum leaf conductance in needles from upper limit specimens was higher than those measured in specimens living in the lower levels of the sub-alpine forest and also displayed lower cuticle thickness values, which should reinforce the seminal hypothesis by Michaelis. Our study showed clear evidence that supports the inadequate development of needle cuticles as one of the factors that lead to increased transpirational water losses during winter and, consequently, a higher risk of suffering frost drought.

5.
Tree Physiol ; 41(3): 371-387, 2021 03 06.
Article in English | MEDLINE | ID: mdl-33079165

ABSTRACT

Nowadays, evergreen sclerophyllous and winter-deciduous malacophyllous oaks with different paleogeographical origins coexist under Mediterranean-type climates, such as the mixed forests of the evergreen Quercus ilex subsp. rotundifolia Lam. and the winter-deciduous Quercus faginea Lam. Both Mediterranean oaks constitute two examples of contrasting leaf habit, so it could be expected that they would have different functional strategies to cope with summer drought. In this study, we analysed photosynthetic, photochemical and hydraulic traits of different organs for Q. faginea and Q. ilex subsp. rotundifolia under well-watered conditions and subjected to very severe drought. The coordinated response between photosynthetic and hydraulic traits explained the higher photosynthetic capacity of Q. faginea under well-watered conditions, which compensated its shorter leaf life span at the expense of higher water consumption. The progressive imposition of water stress evidenced that both types of Mediterranean oaks displayed different functional strategies to cope with water limitations. Specifically, the decrease in mesophyll conductance associated with edaphic drought seems to be the main factor explaining the differences found in the dynamics of net CO2 assimilation throughout the drought period. The sharp decline in photosynthetic traits of Q. faginea was coupled with a strong decrease in shoot hydraulic conductance in response to drought. This fact probably avoided extensive xylem embolism in the stems (i.e., 'vulnerability segmentation'), which enabled new leaf development after drought period in Q. faginea. By contrast, leaves of Q. ilex subsp. rotundifolia showed effective photoprotective mechanisms and high resistance to drought-induced cavitation, which would be related with the longer leaf life span of the evergreen Mediterranean oaks. The co-occurrence of both types of Mediterranean oaks could be related to edaphic conditions that ensure the maintenance of soil water potential above critical values for Q. faginea, which can be severely affected by soil degradation and climate change.


Subject(s)
Quercus , Droughts , Habits , Photosynthesis , Plant Leaves , Water
6.
Physiol Plant ; 170(4): 537-549, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32869857

ABSTRACT

Predicted increases in atmospheric concentration of carbon dioxide (CO2 ) coupled with increased temperatures and drought are expected to strongly influence the development of most of the plant species in the world, especially in areas with high risk of desertification like the Mediterranean basin. Helianthemum almeriense is an ecologically important Mediterranean shrub with an added interest because it serves as the host for the Terfezia claveryi mycorrhizal fungus, which is a desert truffle with increasingly commercial interest. Although both plant and fungi are known to be well adapted to dry conditions, it is still uncertain how the increase in atmospheric CO2 will influence them. In this article we have addressed the physiological responses of H. almeriense × T. claveryi mycorrhizal plants to increases in atmospheric CO2 coupled with drought and high vapor pressure deficit. This work reports one of the few estimations of mesophyll conductance in a drought deciduous Mediterranean shrub and evaluates its role in photosynthesis limitation. High atmospheric CO2 concentrations help desert truffle mycorrhizal plants to cope with the adverse effects of progressive drought during Mediterranean springs by improving carbon net assimilation, intrinsic water use efficiency and dispersal of the species through increased flowering events.


Subject(s)
Ascomycota , Cistaceae , Mycorrhizae , Carbon Dioxide , Symbiosis
7.
Plant Cell Environ ; 43(8): 1944-1957, 2020 08.
Article in English | MEDLINE | ID: mdl-32394490

ABSTRACT

Resprouting is an ancestral trait in angiosperms that confers resilience after perturbations. As climate change increases stress, resprouting vigor is declining in many forest regions, but the underlying mechanism is poorly understood. Resprouting in woody plants is thought to be primarily limited by the availability of non-structural carbohydrate reserves (NSC), but hydraulic limitations could also be important. We conducted a multifactorial experiment with two levels of light (ambient, 2-3% of ambient) and three levels of water stress (0, 50 and 80 percent losses of hydraulic conductivity, PLC) on two Mediterranean oaks (Quercus ilex and Q. faginea) under a rain-out shelter (n = 360). The proportion of resprouting individuals after canopy clipping declined markedly as PLC increased for both species. NSC concentrations affected the response of Q. ilex, the species with higher leaf construction costs, and its effect depended on the PLC. The growth of resprouting individuals was largely dependent on photosynthetic rates for both species, while stored NSC availability and hydraulic limitations played minor and non-significant roles, respectively. Contrary to conventional wisdom, our results indicate that resprouting in oaks may be primarily driven by complex interactions between hydraulics and carbon sources, whereas stored NSC play a significant but secondary role.


Subject(s)
Carbohydrate Metabolism/physiology , Plant Roots/metabolism , Quercus/physiology , Dehydration , Photosynthesis/physiology , Plant Leaves/metabolism , Quercus/growth & development , Spain
8.
Plant Cell Environ ; 43(1): 28-39, 2020 01.
Article in English | MEDLINE | ID: mdl-31677177

ABSTRACT

Vapour pressure deficit is a major driver of seasonal changes in transpiration, but photoperiod also modulates leaf responses. Climate warming might enhance transpiration by increasing atmospheric water demand and the length of the growing season, but photoperiod-sensitive species could show dampened responses. Here, we document that day length is a significant driver of the seasonal variation in stomatal conductance. We performed weekly gas exchange measurements across a common garden experiment with 12 oak species from contrasting geographical origins, and we observed that the influence of day length was of similar strength to that of vapour pressure deficit in driving the seasonal pattern. We then examined the generality of our findings by incorporating day-length regulation into well-known stomatal models. For both angiosperm and gymnosperm species, the models improved significantly when adding day-length dependences. Photoperiod control over stomatal conductance could play a large yet underexplored role on the plant and ecosystem water balances.


Subject(s)
Plant Stomata/physiology , Quercus/physiology , Seasons , Cycadopsida/physiology , Magnoliopsida/physiology , Photoperiod , Plant Leaves/physiology , Plant Transpiration/physiology , Trees/physiology , Vapor Pressure
9.
Tree Physiol ; 40(7): 827-840, 2020 06 30.
Article in English | MEDLINE | ID: mdl-31728539

ABSTRACT

Plants prevent uncontrolled water loss by synthesizing, depositing and maintaining a hydrophobic layer over their primary aerial organs-the plant cuticle. Quercus coccifera L. can plastically respond to environmental conditions at the cuticular level. When exposed to hot summer conditions with high vapour-pressure deficit (VPD) and intense solar radiation (Mediterranean atmospheric conditions; MED), this plant species accumulates leaf cuticular waxes even over the stomata, thereby decreasing transpirational water loss. However, under mild summer conditions with moderate VPD and regular solar radiation (temperate atmospheric conditions; TEM), this effect is sharply reduced. Despite the ecophysiological importance of the cuticular waxes of Q. coccifera, the wax composition and its contribution to avoiding uncontrolled dehydration remain unknown. Thus, we determined several leaf traits for plants exposed to both MED and TEM conditions. Further, we qualitatively and quantitatively investigated the cuticular lipid composition by gas chromatography. Finally, we measured the minimum leaf conductance (gmin) as an indicator of the efficacy of the cuticular transpiration barrier. The MED leaves were smaller, stiffer and contained a higher load of cuticular lipids than TEM leaves. The amounts of leaf cutin and cuticular waxes of MED plants were 1.4 times and 2.6 times higher than that found for TEM plants, respectively. In detail, MED plants produced higher amounts of all compound classes of cuticular waxes, except for the equivalence of alkanoic acids. Although MED leaves contained higher cutin and cuticular wax loads, the gmin was not different between the two habitats. Our findings suggest that the qualitative accumulation of equivalent cuticular waxes might compensate for the higher wax amount of MED plants, thereby contributing equally to the efficacy of the cuticular transpirational barrier of Q. coccifera. In conclusion, we showed that atmospheric conditions profoundly affect the cuticular lipid composition of Q. coccifera leaves, but do not alter its transpiration barrier properties.


Subject(s)
Quercus , Plant Epidermis , Plant Leaves , Vapor Pressure , Water , Waxes
10.
Plant Methods ; 15: 128, 2019.
Article in English | MEDLINE | ID: mdl-31709000

ABSTRACT

BACKGROUND: Non-contact resonant ultrasound spectroscopy (NC-RUS) has been proven as a reliable technique for the dynamic determination of leaf water status. It has been already tested in more than 50 plant species. In parallel, relative water content (RWC) is highly used in the ecophysiological field to describe the degree of water saturation in plant leaves. Obtaining RWC implies a cumbersome and destructive process that can introduce artefacts and cannot be determined instantaneously. RESULTS: Here, we present a method for the estimation of RWC in plant leaves from non-contact resonant ultrasound spectroscopy (NC-RUS) data. This technique enables to collect transmission coefficient in a [0.15-1.6] MHz frequency range from plant leaves in a non-invasive, non-destructive and rapid way. Two different approaches for the proposed method are evaluated: convolutional neural networks (CNN) and random forest (RF). While CNN takes the entire ultrasonic spectra acquired from the leaves, RF only uses four relevant parameters resulted from the transmission coefficient data. Both methods were tested successfully in Viburnum tinus leaf samples with Pearson's correlations between 0.92 and 0.84. CONCLUSIONS: This study showed that the combination of NC-RUS technique with deep learning algorithms is a robust tool for the instantaneous, accurate and non-destructive determination of RWC in plant leaves.

11.
Tree Physiol ; 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31781752

ABSTRACT

Plants prevent uncontrolled water loss by synthesizing, depositing and maintaining a hydrophobic layer over their primary aerial organs-the plant cuticle. Quercus coccifera L. can plastically respond to environmental conditions at the cuticular level. When exposed to hot summer conditions with high vapour-pressure deficit (VPD) and intense solar radiation (Mediterranean atmospheric conditions; MED), this plant species accumulates leaf cuticular waxes even over the stomata, thereby decreasing transpirational water loss. However, under mild summer conditions with moderate VPD and regular solar radiation (temperate atmospheric conditions; TEM), this effect is sharply reduced. Despite the ecophysiological importance of the cuticular waxes of Q. coccifera, the wax composition and its contribution to avoiding uncontrolled dehydration remain unknown. Thus, we determined several leaf traits for plants exposed to both MED and TEM conditions. Further, we qualitatively and quantitatively investigated the cuticular lipid composition by gas chromatography. Finally, we measured the minimum leaf conductance (gmin) as an indicator of the efficacy of the cuticular transpiration barrier. The MED leaves were smaller, stiffer and contained a higher load of cuticular lipids than TEM leaves. The amounts of leaf cutin and cuticular waxes of MED plants were 1.4 times and 2.6 times higher than that found for TEM plants, respectively. In detail, MED plants produced higher amounts of all compound classes of cuticular waxes, except for the equivalence of alkanoic acids. Although MED leaves contained higher cutin and cuticular wax loads, the gmin was not different between the two habitats. Our findings suggest that the qualitative accumulation of equivalent cuticular waxes might compensate for the higher wax amount of MED plants, thereby contributing equally to the efficacy of the cuticular transpirational barrier of Q. coccifera. In conclusion, we showed that atmospheric conditions profoundly affect the cuticular lipid composition of Q. coccifera leaves, but do not alter its transpiration barrier properties.

12.
New Phytol ; 218(4): 1406-1418, 2018 06.
Article in English | MEDLINE | ID: mdl-29682746

ABSTRACT

The Antarctic Peninsula has experienced a rapid warming in the last decades. Although recent climatic evidence supports a new tendency towards stabilization of temperatures, the impacts on the biosphere, and specifically on Antarctic plant species, remain unclear. We evaluated the in situ warming effects on photosynthesis, including the underlying diffusive, biochemical and anatomical determinants, and the relative growth of two Antarctic vascular species, Colobanthus quitensis and Deschampsia antarctica, using open top chambers (OTCs) and gas exchange measurements in the field. In C. quitensis, the photosynthetic response to warming relied on specific adjustments in the anatomical determinants of the leaf CO2 transfer, which enhanced mesophyll conductance and photosynthetic assimilation, thereby promoting higher leaf carbon gain and plant growth. These changes were accompanied by alterations in the leaf chemical composition. By contrast, D. antarctica showed no response to warming, with a lack of significant differences between plants grown inside OTCs and plants grown in the open field. Overall, the present results are the first reporting a contrasting effect of in situ warming on photosynthesis and its underlying determinants, of the two unique Antarctic vascular plant species, which could have direct consequences on their ecological success under future climate conditions.


Subject(s)
Embryophyta/growth & development , Embryophyta/physiology , Global Warming , Photosynthesis , Plant Vascular Bundle/physiology , Antarctic Regions , Biomass , Carbon Dioxide/metabolism , Geography , Mesophyll Cells/physiology , Microclimate , Models, Biological , Nitrogen/metabolism , Plant Stomata/anatomy & histology , Plant Stomata/physiology , Temperature
14.
PLoS One ; 12(8): e0183970, 2017.
Article in English | MEDLINE | ID: mdl-28859145

ABSTRACT

Phylogenetic analysis by maximum likelihood (PAML) has become the standard approach to study positive selection at the molecular level, but other methods may provide complementary ways to identify amino acid replacements associated with particular conditions. Here, we compare results of the decision tree (DT) model method with ones of PAML using the key photosynthetic enzyme RuBisCO as a model system to study molecular adaptation to particular ecological conditions in oaks (Quercus). We sequenced the chloroplast rbcL gene encoding RuBisCO large subunit in 158 Quercus species, covering about a third of the global genus diversity. It has been hypothesized that RuBisCO has evolved differentially depending on the environmental conditions and leaf traits governing internal gas diffusion patterns. Here, we show, using PAML, that amino acid replacements at the residue positions 95, 145, 251, 262 and 328 of the RuBisCO large subunit have been the subject of positive selection along particular Quercus lineages associated with the leaf traits and climate characteristics. In parallel, the DT model identified amino acid replacements at sites 95, 219, 262 and 328 being associated with the leaf traits and climate characteristics, exhibiting partial overlap with the results obtained using PAML.


Subject(s)
Adaptation, Physiological/genetics , Amino Acid Substitution , Photosynthesis/genetics , Phylogeny , Quercus/genetics , Ribulose-Bisphosphate Carboxylase/genetics , Chloroplasts/genetics , Chloroplasts/metabolism , Climate , Decision Trees , Evolution, Molecular , Gene Expression , Likelihood Functions , Models, Molecular , Mutation , Plant Leaves/genetics , Plant Leaves/metabolism , Protein Structure, Secondary , Quercus/classification , Quercus/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Selection, Genetic
15.
Tree Physiol ; 37(8): 1084-1094, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28541538

ABSTRACT

Leaf dry mass per unit area (LMA) has been suggested to negatively affect the mesophyll conductance to CO2 (gm), the most limiting factor for photosynthesis per unit leaf area (AN) in many evergreens. Several anatomical traits (i.e., greater leaf thickness and thicker cell walls) constraining gm could explain the negative scaling of gm and AN with LMA across species. However, the Mediterranean sclerophyll Quercus ilex L. shows a major within-species variation in functional traits (greater LMA associated with higher nitrogen content and AN) that might contrast the worldwide trends. The objective of this study was to elucidate the existence of variations in other leaf anatomical parameters determining gm and/or biochemical traits improving the capacity of carboxylation (Vc,max) that could modulate the relationship of AN with LMA across this species. The results revealed that gm was the most limiting factor for AN in all the studied Q. ilex provenances from Spain and Italy. The within-species differences in gm can be partly attributed to the variation in several leaf anatomical traits, mainly cell-wall thickness (Tcw), chloroplast thickness (Tchl) and chloroplast exposed surface area facing intercellular air spaces (Sc/S). A positive scaling of gm and AN with Vc,max was also found, associated with an increased nitrogen content per area. A strong correlation of maximum photosynthetic electron transport (Jmax) with AN further indicated a coordination between the carboxylase activity and the electron transport chain. In conclusion, we have confirmed the strong ecotypic variation in the photosynthetic performance of individual provenances of Q. ilex. Thus, the within-species increases found in AN for Q. ilex with increasing foliage robustness can be explained by a synergistic effect among anatomical (at the subcellular and cellular level) and biochemical traits, which markedly improved gm and Vc,max.


Subject(s)
Nitrogen/analysis , Photosynthesis , Quercus/physiology , Italy , Mesophyll Cells/physiology , Plant Leaves/chemistry , Spain
16.
New Phytol ; 214(2): 585-596, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28058722

ABSTRACT

Leaf mass per area (LMA) has been suggested to negatively affect the mesophyll conductance to CO2 (gm ), which is the most limiting factor for area-based photosynthesis (AN ) in many Mediterranean sclerophyll species. However, despite their high LMA, these species have similar AN to plants from other biomes. Variations in other leaf anatomical traits, such as mesophyll and chloroplast surface area exposed to intercellular air space (Sm /S and Sc /S), may offset the restrictions imposed by high LMA in gm and AN in these species. Seven sclerophyllous Mediterranean oaks from Europe/North Africa and North America with contrasting LMA were compared in terms of morphological, anatomical and photosynthetic traits. Mediterranean oaks showed specific differences in AN that go beyond the common morphological leaf traits reported for these species (reduced leaf area and thick leaves). These variations resulted mainly from the differences in gm , the most limiting factor for carbon assimilation in these species. Species with higher AN showed increased Sc /S, which implies increased gm without changes in stomatal conductance. The occurrence of this anatomical adaptation at the cell level allowed evergreen oaks to reach AN values comparable to congeneric deciduous species despite their higher LMA.


Subject(s)
Mesophyll Cells/cytology , Photosynthesis , Quercus/cytology , Quercus/physiology , Climate , Geography , Mediterranean Region , Mesophyll Cells/physiology , Plant Stomata/physiology , Species Specificity
17.
Sensors (Basel) ; 16(7)2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27428968

ABSTRACT

Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1-1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400-900 kHz and 200-400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Ultrasonics/instrumentation , Ultrasonics/methods , Water/analysis , Agricultural Irrigation , Climate Change , Plant Leaves/metabolism , Water/metabolism
18.
Tree Physiol ; 36(3): 300-10, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26543153

ABSTRACT

Leaves growing in the forest understory usually present a decreased mesophyll conductance (gm) and photosynthetic capacity. The role of leaf anatomy in determining the variability in gm among species is known, but there is a lack of information on how the acclimation of gm to shade conditions is driven by changes in leaf anatomy. Within this context, we demonstrated that Abies pinsapo Boiss. experienced profound modifications in needle anatomy to drastic changes in light availability that ultimately led to differential photosynthetic performance between trees grown in the open field and in the forest understory. In contrast to A. pinsapo, its congeneric Abies alba Mill. did not show differences either in needle anatomy or in photosynthetic parameters between trees grown in the open field and in the forest understory. The increased gm values found in trees of A. pinsapo grown in the open field can be explained by occurrence of stomata at both needle sides (amphistomatous needles), increased chloroplast surface area exposed to intercellular airspace, decreased cell wall thickness and, especially, decreased chloroplast thickness. To the best of our knowledge, the role of such drastic changes in ultrastructural needle anatomy in explaining the response of gm to the light environment has not been demonstrated in field conditions.


Subject(s)
Abies/physiology , Acclimatization/radiation effects , Carbon Dioxide/metabolism , Light , Mesophyll Cells/metabolism , Photosynthesis/radiation effects , Plant Leaves/anatomy & histology , Abies/radiation effects , Mesophyll Cells/cytology , Mesophyll Cells/radiation effects , Plant Leaves/radiation effects , Spain
19.
Tree Physiol ; 36(3): 287-99, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26496958

ABSTRACT

'White oaks'--one of the main groups of the genus Quercus L.--are represented in western Eurasia by the 'roburoid oaks', a deciduous and closely related genetic group that should have an Arcto-Tertiary origin under temperate-nemoral climates. Nowadays, roburoid oak species such as Quercus robur L. are still present in these temperate climates in Europe, but others are also present in southern Europe under Mediterranean-type climates, such as Quercus faginea Lam. We hypothesize the existence of a coordinated functional response at the whole-shoot scale in Q. faginea under Mediterranean conditions to adapt to more xeric habitats. The results reveal a clear morphological and physiological segregation between Q. robur and Q. faginea, which constitute two very contrasting functional types in response to climate dryness. The most outstanding divergence between the two species is the reduction in transpiring area in Q. faginea, which is the main trait imposed by the water deficit in Mediterranean-type climates. The reduction in leaf area ratio in Q. faginea should have a negative effect on carbon gain that is partially counteracted by a higher inherent photosynthetic ability of Q. faginea when compared with Q. robur, as a consequence of higher mesophyll conductance, higher maximum velocity of carboxylation and much higher stomatal conductance (gs). The extremely high gs of Q. faginea counteracts the expected reduction in gs imposed by the stomatal sensitivity to vapor pressure deficit, allowing this species to diminish water losses maintaining high net CO2 assimilation values along the vegetative period under nonlimiting soil water potential values. In conclusion, the present study demonstrates that Q. faginea can be regarded as an example of adaptation of a deciduous oak to Mediterranean-type climates.


Subject(s)
Adaptation, Physiological , Climate , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Quercus/anatomy & histology , Quercus/physiology , Carbon Dioxide/metabolism , Mediterranean Region , Mesophyll Cells/physiology , Nitrogen/metabolism , Photosynthesis , Plant Stomata/physiology , Rain , Ribulose-Bisphosphate Carboxylase/metabolism , Seasons , Species Specificity , Temperature , Vapor Pressure
20.
Tree Physiol ; 36(3): 356-67, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26705310

ABSTRACT

The accumulation of epicuticular waxes over stomata in Quercus coccifera L. contributes to a severe reduction in maximum stomatal conductance (g s,max) under Mediterranean (MED) conditions. However, this phenomenon was not observed in this species under temperate (TEM) conditions, which could lead to differences in the ability to assimilate CO2 between the sites. We hypothesise that the overall importance of such a reduction in gs,max on photosynthesis is modulated by other factors affecting carbon gain, mainly mesophyll conductance to CO2 (g m), through a plastic response to changes in environmental conditions (i.e., vapour pressure deficit, VPD, and mean daily quantum flux density, Q int). The results reveal that leaves grown at the TEM site did not show an increased ability for net CO2 assimilation (A N), mainly due to an equal gm at both sites. This fact is explained by a trade-off between an increased conductance of the gas phase (g ias) and a reduced conductance of the liquid phase (g liq) at the TEM site compared with the MED site. In spite of the reduction in gs,max at the MED site, transpiration (E) did not diminish during midsummer to the levels of the TEM site due to a higher VPD found at the MED site, yielding a higher water use efficiency (AN/E) at the TEM site. Moreover, photosynthetic nitrogen use efficiency was also higher at the TEM site, indicating these leaves can reach similar values of AN with lower nitrogen investment that those at the MED site. These results suggest that Q. coccifera does not always use the main resources (water and nutrients) at leaf level as efficiently as possible. Moreover, the different patterns of resource use (in particular N), together with the functional plasticity, cannot overcome the morpho-functional constraints that limit photosynthetic activity, even under potentially favourable conditions.


Subject(s)
Carbon/metabolism , Plant Leaves/physiology , Quercus/physiology , Water/metabolism , Carbon Dioxide/metabolism , Circadian Rhythm/radiation effects , Light , Mediterranean Region , Mesophyll Cells/cytology , Mesophyll Cells/physiology , Mesophyll Cells/radiation effects , Nitrogen/metabolism , Photosynthesis/radiation effects , Pigments, Biological/metabolism , Plant Leaves/chemistry , Plant Leaves/radiation effects , Plant Stomata/physiology , Plant Stomata/radiation effects , Quercus/radiation effects , Time Factors , Vapor Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...