Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Adv Healthc Mater ; 13(13): e2303498, 2024 05.
Article in English | MEDLINE | ID: mdl-38329408

ABSTRACT

Cardiovascular diseases are the leading cause of death and current treatments such as stents still suffer from disadvantages. Balloon expansion causes damage to the arterial wall and limited and delayed endothelialization gives rise to restenosis and thrombosis. New more performing materials that circumvent these disadvantages are required to improve the success rate of interventions. To this end, the use of a novel polymer, poly(hexamethylene terephthalate), is investigated for this application. The synthesis to obtain polymers with high molar masses up to 126.5 kg mol-1 is optimized and a thorough chemical and thermal analysis is performed. The polymers are 3D-printed into personalized cardiovascular stents using the state-of-the-art solvent-cast direct-writing technique, the potential of these stents to expand using their shape memory behavior is established, and it is shown that the stents are more resistant to compression than the poly(l-lactide) benchmark. Furthermore, the polymer's hydrolytic stability is demonstrated in an accelerated degradation study of 6 months. Finally, the stents are subjected to an in vitro biological evaluation, revealing that the polymer is non-hemolytic and supports significant endothelialization after only 7 days, demonstrating the enormous potential of these polymers to serve cardiovascular applications.


Subject(s)
Printing, Three-Dimensional , Stents , Humans , Tissue Scaffolds/chemistry , Human Umbilical Vein Endothelial Cells , Polymers/chemistry , Materials Testing , Polyesters/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
2.
Front Bioeng Biotechnol ; 11: 1285565, 2023.
Article in English | MEDLINE | ID: mdl-38053846

ABSTRACT

A previously developed cellularized collagen-based vascular wall model showed promising results in mimicking the biological properties of a native vessel but lacked appropriate mechanical properties. In this work, we aim to improve this collagen-based model by reinforcing it using a tubular polymeric (reinforcement) scaffold. The polymeric reinforcements were fabricated exploiting commercial poly (ε-caprolactone) (PCL), a polymer already used to fabricate other FDA-approved and commercially available devices serving medical applications, through 1) solution electrospinning (SES), 2) 3D printing (3DP) and 3) melt electrowriting (MEW). The non-reinforced cellularized collagen-based model was used as a reference (COL). The effect of the scaffold's architecture on the resulting mechanical and biological properties of the reinforced collagen-based model were evaluated. SEM imaging showed the differences in scaffolds' architecture (fiber alignment, fiber diameter and pore size) at both the micro- and the macrolevel. The polymeric scaffold led to significantly improved mechanical properties for the reinforced collagen-based model (initial elastic moduli of 382.05 ± 132.01 kPa, 100.59 ± 31.15 kPa and 245.78 ± 33.54 kPa, respectively for SES, 3DP and MEW at day 7 of maturation) compared to the non-reinforced collagen-based model (16.63 ± 5.69 kPa). Moreover, on day 7, the developed collagen gels showed stresses (for strains between 20% and 55%) in the range of [5-15] kPa for COL, [80-350] kPa for SES, [20-70] kPa for 3DP and [100-190] kPa for MEW. In addition to the effect on the resulting mechanical properties, the polymeric tubes' architecture influenced cell behavior, in terms of proliferation and attachment, along with collagen gel compaction and extracellular matrix protein expression. The MEW reinforcement resulted in a collagen gel compaction similar to the COL reference, whereas 3DP and SES led to thinner and longer collagen gels. Overall, it can be concluded that 1) the selected processing technique influences the scaffolds' architecture, which in turn influences the resulting mechanical and biological properties, and 2) the incorporation of a polymeric reinforcement leads to mechanical properties closely matching those of native arteries.

3.
Biomater Sci ; 11(13): 4602-4615, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37198968

ABSTRACT

Biomimetic surface modification with cell-adhesive peptides is a promising approach to improve endothelialization of current bioresorbable stents (BRS). Among them, RGDS and YIGSR sequences have been reported to mediate adhesion and migration of endothelial cells (ECs) while preventing platelet activation. This work presents the functionalization of novel 3D-printed poly-L-lactic acid (PLLA) and poly(L-lactic-co-ε-caprolactone) (PLCL) BRS with linear RGDS and YIGSR sequences, as well as a dual platform (PF) containing both motifs within a single biomolecule. Functionalized surfaces were characterized in terms of static contact angle, biomolecule distribution under confocal fluorescence microscopy and peptide quantification via detachment from the surface, showing a biomolecule density in the range of 0.5 to 3.5 nmol cm-2. Biological evaluation comprised a cell adhesion test on functionalized films with ECs and a blood perfusion assay on functionalized stents to assess ECs response and device hemocompatibility, respectively. Cell adhesion assays evidenced significantly increased cell number and spreading onto functionalized films with respect to control samples. Regarding stents' hemocompatibility, platelet adhesion onto PLCL stents was severely decreased with respect to PLLA. In addition, functionalization with RGDS, YIGSR and the PF rendered BRS stents displaying even further reduced platelet adhesion. In conclusion, the combination of intrinsically less prothrombogenic materials such as PLCL and its functionalization with EC-discriminating adhesive biomolecules paves the way for a new generation of BRS based on accelerated re-endothelialization approaches.


Subject(s)
Absorbable Implants , Endothelial Cells , Peptides/chemistry , Stents , Polymers/chemistry , Cell Adhesion , Printing, Three-Dimensional
4.
Nanomaterials (Basel) ; 12(7)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35407334

ABSTRACT

Endothelial coverage of an exposed cardiovascular stent surface leads to the occurrence of restenosis and late-stent thrombosis several months after implantation. To overcome this difficulty, modification of stent surfaces with topographical or biochemical features may be performed to increase endothelial cells' (ECs) adhesion and/or migration. This work combines both strategies on cobalt-chromium (CoCr) alloy and studies the potential synergistic effect of linear patterned surfaces that are obtained by direct laser interference patterning (DLIP), coupled with the use of Arg-Gly-Asp (RGD) and Tyr-Ile-Gly-Ser-Arg (YIGSR) peptides. An extensive characterization of the modified surfaces was performed by using AFM, XPS, surface charge, electrochemical analysis and fluorescent methods. The biological response was studied in terms of EC adhesion, migration and proliferation assays. CoCr surfaces were successfully patterned with a periodicity of 10 µm and two different depths, D (≈79 and 762 nm). RGD and YIGSR were immobilized on the surfaces by CPTES silanization. Early EC adhesion was increased on the peptide-functionalized surfaces, especially for YIGSR compared to RGD. High-depth patterns generated 80% of ECs' alignment within the topographical lines and enhanced EC migration. It is noteworthy that the combined use of the two strategies synergistically accelerated the ECs' migration and proliferation, proving the potential of this strategy to enhance stent endothelialization.

5.
Bioact Mater ; 6(12): 4430-4446, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34027233

ABSTRACT

In the recent decades, zinc (Zn) and its alloys have been drawing attention as promising candidates for bioresorbable cardiovascular stents due to its degradation rate more suitable than magnesium (Mg) and iron (Fe) alloys. However, its mechanical properties need to be improved in order to meet the criteria for vascular stents. This work investigates the mechanical properties, biodegradability and biocompatibility of Zn-Mg and Zn-Cu alloys in order to determine a proper alloy composition for optimal stent performance. Nanoindentation measurements are performed to characterize the mechanical properties at the nanoscale as a function of the Zn microstructure variations induced by alloying. The biodegradation mechanisms are discussed and correlated to microstructure, mechanical performance and bacterial/cell response. Addition of Mg or Cu alloying elements refined the microstructure of Zn and enhanced yield strength (YS) and ultimate tensile strength (UTS) proportional to the volume fraction of secondary phases. Zn-1Mg showed the higher YS and UTS and better performance in terms of degradation stability in Hanks' solution. Zn-Cu alloys presented an antibacterial effect for S. aureus controlled by diffusion mechanisms and by contact. Biocompatibility was dependent on the degradation rate and the nature of the corrosion products.

6.
Nanomedicine ; 18: 1-10, 2019 06.
Article in English | MEDLINE | ID: mdl-30822556

ABSTRACT

Biomimetic design is a key tenet of orthopedic device technology, and in particular the development of responsive surfaces that promote ion exchange with interfacing tissues, facilitating the ionic events that occur naturally during bone repair, hold promise in orthopedic fixation strategies. Non-bioactive nanostructured titanium implants treated by shot-blasting and acid-etching (AE) induced higher bone implant contact (BIC=52% and 65%) compared to shot-blasted treated (SB) implants (BIC=46% and 47%) at weeks 4 and 8, respectively. However, bioactive charged implants produced by plasma (PL) or thermochemical (BIO) processes exhibited enhanced osteoconductivity through specific ionic surface-tissue exchange (PL, BIC= 69% and 77% and BIO, BIC= 85% and 87% at weeks 4 and 8 respectively). Furthermore, bioactive surfaces (PL and BIO) showed functional mechanical stability (resonance frequency analyses) as early as 4 weeks post implantation via increased total bone area (BAT=56% and 59%) ingrowth compared to SB (BAT=35%) and AE (BAT=35%) surfaces.


Subject(s)
Bone Regeneration/drug effects , Chemical Phenomena , Dental Implants , Titanium/pharmacology , Animals , Female , Interferometry , Static Electricity , Surface Properties , Swine , Swine, Miniature
7.
ACS Appl Mater Interfaces ; 11(4): 3666-3678, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30607934

ABSTRACT

Installing bioactivity on metallic biomaterials by mimicking the extracellular matrix (ECM) is crucial for stimulating specific cellular responses to ultimately promote tissue regeneration. Fibronectin is an ECM protein commonly used for biomaterial functionalization. The use of fibronectin recombinant fragments is an attractive alternate to the use of full-length fibronectin because of the relatively low cost and facility of purification. However, it is necessary to combine more than one fragment, for example, the cell attachment site and the heparin binding II (HBII), either mixed or in one molecule, to obtain complete activity. In the present study, we proposed to install adhesion capacity to the HBII fragment by an RGD gain-of-function DNA mutation, retaining its cell differentiation capacity and thereby producing a small and very active protein fragment. The novel molecule, covalently immobilized onto titanium surfaces, maintained the growth factor-binding capacity and stimulated cell spreading, osteoblastic cell differentiation, and mineralization of human mesenchymal stem cells compared to the HBII native protein. These results highlight the potential capacity of gain-of-function DNA mutations in the design of novel molecules for the improvement of osseointegration properties of metallic implant surfaces.


Subject(s)
Fibronectins/metabolism , Mesenchymal Stem Cells/metabolism , Titanium/chemistry , Cell Adhesion/genetics , Cell Adhesion/physiology , Fibronectins/genetics , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mutation/genetics , Osseointegration/genetics , Osseointegration/physiology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
8.
Adv Healthc Mater ; 6(19)2017 Oct.
Article in English | MEDLINE | ID: mdl-28714577

ABSTRACT

The main drawbacks of cardiovascular bare-metal stents (BMS) are in-stent restenosis and stent thrombosis as a result of an incomplete endothelialization after stent implantation. Nano- and microscale modification of implant surfaces is a strategy to recover the functionality of the artery by stimulating and guiding molecular and biological processes at the implant/tissue interface. In this study, cobalt-chromium (CoCr) alloy surfaces are modified via direct laser interference patterning (DLIP) in order to create linear patterning onto CoCr surfaces with different periodicities (≈3, 10, 20, and 32 µm) and depths (≈20 and 800 nm). Changes in surface topography, chemistry, and wettability are thoroughly characterized before and after modification. Human umbilical vein endothelial cells' adhesion and spreading are similar for all patterned and plain CoCr surfaces. Moreover, high-depth series induce cell elongation, alignment, and migration along the patterned lines. Platelet adhesion and aggregation decrease in all patterned surfaces compared to CoCr control, which is associated with changes in wettability and oxide layer characteristics. Cellular studies provide evidence of the potential of DLIP topographies to foster endothelialization without enhancement of platelet adhesion, which will be of high importance when designing new BMS in the future.


Subject(s)
Blood Platelets/cytology , Blood Platelets/physiology , Blood Vessel Prosthesis , Chromium Alloys/radiation effects , Endothelial Cells/cytology , Endothelial Cells/physiology , Stents , Cell Adhesion/physiology , Cells, Cultured , Chromium Alloys/chemistry , Equipment Failure Analysis , Humans , Lasers , Materials Testing , Prosthesis Design , Radiation Dosage , Surface Properties/radiation effects
9.
J Biomed Mater Res A ; 105(4): 973-983, 2017 04.
Article in English | MEDLINE | ID: mdl-28000367

ABSTRACT

Immobilization of bioactive peptide sequences on CoCr surfaces is an effective route to improve endothelialization, which is of great interest for cardiovascular stents. In this work, we explored the effect of physical and covalent immoblization of RGDS, YIGSR and their equimolar combination peptides on endothelial cells (EC) and smooth muscle cell (SMC) adhesion and on thrombogenicity. We extensively investigated using RT-qPCR, the expression by ECs cultured on functionalised CoCr surfaces of different genes. Genes relevant for adhesion (ICAM-1 and VCAM-1), vascularization (VEGFA, VEGFR-1 and VEGFR-2) and anti-thrombogenicity (tPA and eNOS) were over-expressed in the ECs grown to covalently functionalized CoCr surfaces compared to physisorbed and control surfaces. Pro-thrombogenic genes expression (PAI-1 and vWF) decreased over time. Cell co-cultures of ECs/SMCs found that functionalization increased the amount of adhered ECs onto modified surfaces compared to plain CoCr, independently of the used peptide and the strategy of immobilization. SMCs adhered less compared to ECs in all surfaces. All studied peptides showed a lower platelet cell adhesion compared to TCPS. Covalent functionalization of CoCr surfaces with an equimolar combination of RGDS and YIGSR represented prevailing strategy to enhance the early stages of ECs adhesion and proliferation, while preventing SMCs and platelet adhesion. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 973-983, 2017.


Subject(s)
Chromium Alloys/chemistry , Coated Materials, Biocompatible/chemistry , Graft Occlusion, Vascular/prevention & control , Human Umbilical Vein Endothelial Cells/metabolism , Oligopeptides/chemistry , Thrombosis/prevention & control , Blood Platelets/metabolism , Graft Occlusion, Vascular/metabolism , Humans , Thrombosis/metabolism
10.
J Oral Implantol ; 42(6): 469-476, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27589397

ABSTRACT

This study focuses on the fatigue behavior and bone-implant attachment for the more usual surfaces of the different CP-titanium dental implants. The implants studied were: as-received (CTR), acid etching (AE), spark-anodization (SA), and with a grit-blasted surface (GB). Residual stresses were determined by means of X-ray diffraction. The fatigue tests were carried out at 37°C on 160 dental implants, and the stress-failure (S-N) curve was determined. The fatigue tests showed that the grit-blasting process improved fatigue life. This is a consequence of the layer of compressive residual stresses that the treatment generates in titanium surfaces. Further, our aim was to assess and compare the short- and midterm bone regenerative potential and mechanical retention of the implants in bone of New Zealand rabbits. The mechanical retention after 4 and 10 weeks of implantation was evaluated with histometric and pull-out tests, respectively, as a measure of the osseointegration of the implants. The results demonstrated that the GB treatment produced microrough that accelerated bone tissue regeneration and increased mechanical retention in the bone bed at short periods of implantation in comparison with all other implants tested. The GB surface produced an improvement in mechanical long-time behavior and improved bone growth. These types of treated implants can have great potential in clinical applications, as evidenced by the outcomes of the current study.


Subject(s)
Dental Implants , Osseointegration , Stress, Mechanical , Animals , Bone Regeneration , Rabbits , Surface Properties , Titanium
11.
Tissue Eng Part C Methods ; 22(5): 496-508, 2016 05.
Article in English | MEDLINE | ID: mdl-27018545

ABSTRACT

Interface biofunctionalization strategies try to enhance and control the interaction between implants and host organism. Decellularized extracellular matrix (dECM) is widely used as a platform for bioengineering of medical implants, having shown its suitability in a variety of preclinical as well as clinical models. In this study, specifically designed, custom-made synthetic peptides were used to functionalize dECM with different cell adhesive sequences (RGD, REDV, and YIGSR). Effects on in vitro endothelial cell adhesion and in vivo endothelialization were evaluated in standardized models using decellularized ovine pulmonary heart valve cusps (dPVCs) and decellularized aortic grafts (dAoGs), respectively. Contact angle measurements and fluorescent labeling of custom-made peptides showed successful functionalization of dPVCs and dAoGs. The functionalization of dPVCs with a combination of bioactive sequences significantly increased in vitro human umbilical vein endothelial cell adhesion compared to nonfunctionalized controls. In a functional rodent aortic transplantation model, fluorescent-labeled peptides on dAoGs were persistent up to 10 days in vivo under exposure to systemic circulation. Although there was a trend toward enhanced in vivo endothelialization of functionalized grafts compared to nonfunctionalized controls, there was no statistical significance and a large biological variability in both groups. Despite failing to show a clear biological effect in the used in vivo model system, our initial findings do suggest that endothelialization onto dECM may be modulated by customized interface biofunctionalization using the presented method. Since bioactive sequences within the dECM-synthetic peptide platform are easily interchangeable and combinable, further control of host cell proliferation, function, and differentiation seems to be feasible, possibly paving the way to a new generation of multifunctional dECM scaffolds for regenerative medicine.


Subject(s)
Cell Adhesion/physiology , Extracellular Matrix/chemistry , Heart Valves/cytology , Human Umbilical Vein Endothelial Cells/cytology , Pulmonary Valve/cytology , Tissue Engineering/methods , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Humans , Male , Rats , Rats, Wistar , Sheep , Tissue Scaffolds/chemistry
12.
Clin Oral Investig ; 20(5): 1115-20, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26955833

ABSTRACT

OBJECTIVES: Self-drilling orthodontic mini-implants can be used as temporary devices for orthodontic treatments. Our main goal was to evaluate surface characteristics, roughness and wettability, of surface modified mini-implants to increase their stability during orthodontic treatment without inducing bone fracture and tissue destruction during unscrewing. MATERIALS AND METHODS: Modified mini-implants by acid etching, grit-blasting and its combination were implanted in 20 New Zealand rabbits during 10 weeks. After that, the bone-to-implant (BIC) parameter was determined and the torque during unscrewing was measured. The surface characteristics, roughness and wettability, were also measured, onto modified Ti c.p. discs. RESULTS: Acid-etched mini-implants (R a ≈ 1.7 µm, contact angle (CA) ≈ 66°) significantly improved the bone-to-implant parameter, 26 %, compared to as-machined mini-implants (R a ≈ 0.3 µm, CA ≈ 68°, BIC = 19 %) due to its roughness. Moreover, this surface treatment did not modify torque during unscrewing due to their statistically similar wettability (p > 0.05). Surface treatments with higher roughness and hydrophobicity (R a ≈ 4.5 µm, CA ≈ 74°) lead to a greater BIC and to a higher removal torque during unscrewing, causing bone fracture, compared to as-machined mini-implants. CONCLUSIONS: Based on these in vivo findings, we conclude that acid-etching surface treatment can support temporary anchoring of titanium mini-implants. CLINICAL RELEVANCE: This treatment represents a step forward in the direction of reducing the time prior to mini-implant loading by increasing their stability during orthodontic treatment, without inducing bone fracture and tissue destruction during unscrewing.


Subject(s)
Dental Implants , Femur/surgery , Orthodontic Anchorage Procedures/instrumentation , Acid Etching, Dental , Animals , Biomechanical Phenomena , Bone Plates , Bone-Implant Interface , Dental Polishing , Device Removal , Implants, Experimental , Materials Testing , Rabbits , Surface Properties , Titanium , Torque , Wettability
13.
Colloids Surf B Biointerfaces ; 127: 22-32, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25637794

ABSTRACT

To improve cardiovascular implant success, metal-based stents are designated to modulate endothelial cells adhesion and migration in order to prevent restenosis and late thrombosis diseases. Biomimetic coatings with extra-cellular matrix adhesive biomolecules onto stents surfaces are a strategy to recover a healthy endothelium. However, the appropriate bioactive sequences to selective promote growth of endothelium and the biomolecules surface immobilization strategy remains to be elucidated. In this study, biofunctionalization of cobalt chromium, CoCr, alloy surfaces with elastin-like recombinamers, ELR, genetically modified with an REDV sequence, was performed to enhance metal surfaces endothelialization. Moreover, physical adsorption and covalent bonding were used as biomolecules binding strategies onto CoCr alloy. Surfaces were activated with plasma and etched with sodium hydroxide previous to silanization with 3-chloropropyltriethoxysilane and functionalized with the ELR. CoCr alloy surfaces were successfully biofunctionalized and the use of an ELR with an REDV sequence, allows conferring bioactivity to the biomaterials surface, demonstrating a higher cell adhesion and spreading of HUVEC cells on the different CoCr surfaces. This effect is emphasized as increases the amount of immobilized biomolecules and directly related to the immobilization technique, covalent bonding, and the increase of surface charge electronegativity. Our strategy of REDV elastin-like recombinamers immobilization onto CoCr alloy surfaces via covalent bonding through organosilanes provides a bioactive surface that promotes endothelial cell adhesion and spreading.


Subject(s)
Cardiovascular System/drug effects , Chromium Alloys/pharmacology , Elastin/chemistry , Elastin/pharmacology , Endothelium/drug effects , Adsorption , Amino Acid Sequence , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Fluorescein-5-isothiocyanate/metabolism , Fluorescence , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Isoelectric Point , Microscopy, Atomic Force , Oligopeptides/pharmacology , Photoelectron Spectroscopy , Static Electricity , Thermodynamics , Wettability
14.
Biointerphases ; 7(1-4): 48, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22875482

ABSTRACT

An understanding of protein adsorption process is crucial for designing biomaterial surfaces. In this work, with the use of a quartz-crystal microbalance with dissipation monitoring, we researched the following: (a) the kinetics of adsorption on TiO(2) surfaces of three extensively described proteins that are relevant for metallic implant integration [i.e., albumin (BSA), fibrinogen (Fbg), and fibronectin (Fn)]; and (b) the competition of those proteins for adsorbing on TiO(2) in a two-step experiment consisted of sequentially exposing the surfaces to different monoprotein solutions. Each protein showed a different process of adsorption and properties of the adlayer-calculated using the Voigt model. The competition experiments showed that BSA displaced larger proteins such as Fn and Fbg when BSA was introduced as the second protein in the system, whereas the larger proteins laid on top of BSA forming an adsorbed protein bi-layer when those were introduced secondly in the system.


Subject(s)
Adsorption , Boron Compounds/chemistry , Fibrinogen/chemistry , Fibronectins/chemistry , Serum Albumin, Bovine/chemistry , Titanium/chemistry , Animals , Cattle , Fibrinogen/metabolism , Fibronectins/metabolism , Humans , Kinetics , Quartz Crystal Microbalance Techniques , Serum Albumin, Bovine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...