Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Hum Gene Ther ; 35(11-12): 401-411, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38717948

ABSTRACT

Currently, adeno-associated virus (AAV) is one of the primary gene delivery vectors in gene therapy, facilitating long-term in vivo gene expression. Despite being imperative, it is incredibly challenging to precisely assess AAV particle distribution according to the sedimentation coefficient and identify impurities related to capsid structures. This study performed the systematic methodological validation of quantifying the AAV empty and full capsid ratio. This includes specificity, accuracy, precision, linearity, and parameter variables involving the sedimentation velocity analytical ultracentrifugation (SV-AUC) method. Specifically, SV-AUC differentiated among the empty, partial, full, and high sedimentation coefficient substance (HSCS) AAV particles while evaluating their sedimentation heterogeneity. The intermediate precision analysis of HE (high percentage of empty capsid) and HF (high percentage of full capsid) samples revealed that the specific species percentage, such as empty or full, was more significant than 50%. Moreover, the relative standard deviation (RSD) could be within 5%. Even for empty or partially less than 15%, the RSD could be within 10%. The accuracy recovery rates of empty capsid were between 103.9% and 108.7% across three different mixtures. When the measured percentage of specific species was more significant than 14%, the recovery rate was between 77.9% and 106.6%. Linearity analysis revealed an excellent linear correlation between the empty, partial, and full in the HE samples. The AAV samples with as low as 7.4 × 1011 cp/mL AAV could be accurately quantified with SV-AUC. The parameter variable analyses revealed that variations in cell alignment significantly affected the overall results. Still, the detection wavelength of 235 nm slightly influenced the empty, partial, and full percentages. Minor detection wavelength changes showed no impact on the sedimentation coefficient of these species. However, the temperature affected the measured sedimentation coefficient. These results validated the SV-AUC method to quantify AAV. This study provides solutions to AAV empty and full capsid ratio quantification challenges and the subsequent basis for calibrating the AAV empty capsid system suitability substance. Because of the AAV structure and potential variability complexity in detection, we jointly calibrated empty capsid system suitability substance with three laboratories to accurately detect the quantitative AAV empty and full capsid ratio. The empty capsid system suitability substance could be used as an external reference to measure the performance of the instrument. The results could be compared with multiple QC (quality control) laboratories based on the AAV vector and calibration accuracy. This is crucial for AUC to be used for QC release and promote gene therapy research worldwide.


Subject(s)
Dependovirus , Genetic Vectors , Ultracentrifugation , Dependovirus/genetics , Ultracentrifugation/methods , Humans , Genetic Vectors/genetics , Genetic Vectors/chemistry , Calibration , Genetic Therapy/methods , Capsid/chemistry , HEK293 Cells
2.
MedComm (2020) ; 5(4): e506, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38525110

ABSTRACT

Recombinant proteins are gaining increasing popularity for treating human diseases. The clinical effectiveness of recombinant proteins is directly related to their biological activity, which is an important indicator in drug development and quality control. However, certain recombinant proteins have unclear or complex signal pathways, making detecting their activity in vitro difficult. For instance, recombinant human endostatin (endostatin), a new antitumor drug developed in China, lacks a sensitive and stable assay for its biological activity since being market approval. To address this issue, we performed a genome-wide screening of immortalized human umbilical vein endothelial cells (HUVECs) using a CRISPR/Cas9 knockout library containing 20,000 targeted genes. We identified two potential endostatin-resistant genes, NEPSPP and UTS2, and successfully constructed a highly sensitive cell line, HUVEC-UTS2-3#, by knocking down the UTS2 gene. Based on the optimized parameters of HUVEC-UTS2-3# cells, we established a new method for detecting the biological activity of endostatin. The method was validated, and it produced results consistent with primary HUVEC cells but with higher sensitivity and more stable data. The use of gene-editing technology provides a novel solution for detecting the biological activity of recombinant proteins that other methods cannot detect.

3.
Rapid Commun Mass Spectrom ; 37(8): e9484, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36735852

ABSTRACT

RATIONALE: Fc-fusion proteins represent a successful class of biopharmaceutical products, which combine the tailored pharmacological properties of biological ligands with the multiple functions of the fragment crystallizable domain of immunoglobulins. There is great diversity in terms of possible biological ligands creating highly diverse structures, therefore the analytical characterization of fusion proteins is far more complex than that of monoclonal antibodies and requires the use and development of additional product-specific methods over conventional generic/platform methods. METHODS: Employing etanercept analogues as studied fusion proteins, the Orbitrap mass analyzer with ultra-high performance liquid chromatography (UHPLC-MS) and imaged capillary isoelectric focusing (icIEF) were utilized for the in-depth fusion protein characterization. RESULTS: The amino acid sequence coverage, peptide mapping, and post-translational modifications of etanercept analogues were analyzed by UHPLC-MS. The post-translational modification results were complemented by imaged capillary isoelectric focusing to produce quality research on etanercept analogues. CONCLUSIONS: The developed workflow integrating UHPLC-MS and icIEF provided an innovative strategy for characterizing complex fusion proteins in the process of quality control and manufacturing.


Subject(s)
Capillary Isoelectric Focusing , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry/methods , Etanercept , Antibodies, Monoclonal/analysis
4.
J Pharm Anal ; 12(2): 308-316, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35582401

ABSTRACT

Recombinant human interferon α2b (rhIFNα2b) is widely used as an antiviral therapy agent for the treatment of hepatitis B and hepatitis C. The current identification test for rhIFNα2b is complex. In this study, an anti-rhIFNα2b nanobody was discovered and used for the development of a rapid lateral flow strip for the identification of rhIFNα2b. RhIFNα2b was used to immunize an alpaca, which established a phage nanobody library. After five steps of enrichment, the nanobody I22, which specifically bound rhIFNα2b, was isolated and inserted into the prokaryotic expression vector pET28a. After subsequent purification, the physicochemical properties of the nanobody were determined. A semiquantitative detection and rapid identification assay of rhIFNα2b was developed using this novel nanobody. To develop a rapid test, the nanobody I22 was coupled with a colloidal gold to produce lateral-flow test strips. The developed rhIFNα2b detection assay had a limit of detection of 1 µg/mL. The isolation of I22 and successful construction of a lateral-flow immunochromatographic test strip demonstrated the feasibility of performing ligand-binding assays on a lateral-flow test strip using recombinant protein products. The principle of this novel assay is generally applicable for the rapid testing of other commercial products, with a great potential for routine use in detecting counterfeit recombinant protein products.

5.
Bioengineered ; 13(4): 8950-8961, 2022 04.
Article in English | MEDLINE | ID: mdl-35358011

ABSTRACT

Promoting osteoblast proliferation and differentiation contributes to the prevention and clinical treatment of osteoporosis. This study was to investigate the effect and mechanism of epigallocatechin gallate (EGCG) on tumor necrosis factor (TNF)-α-caused inhibition of osteoblastic differentiation. First, we cultured mouse embryo osteoblast precursor cells (MC3T3-E1) and induced by TNF-α (0, 2.5, 5, 10 ng/mL). The results revealed that TNF-α significantly inhibited the proliferation, ALP activity and mineralized nodule formation of MC3T3-E1 cells and promoted apoptosis. However, EGCG pretreatment significantly alleviated the inhibitory effect of TNF-α on MC3T3-E1. In addition, TNF-α significantly downregulated the expression of lncRNA TUG1 in MC3T3-E1, while EGCG upregulated the expression of lncRNA TUG1. After overexpression of lncRNA TUG1 in TNF-α-induced MC3T3-E1 cells, it could show similar effects as EGCG. However, interference with lncRNA TUG1 expression diminished the protective effect of EGCG on TNF-α-induced MC3T3-E1 cells. Finally, we found that EGCG inhibited TNF-α-induced activation of the Hippo/YAP signaling pathway, and that low expression of lncRNA TUG1 suppressed this effect. In conclusion, EGCG could suppress Hippo/YAP pathway activity by up-regulating lncRNA TUG1, ultimately improving TNF-α-caused inhibition of osteoblastic differentiation.


Subject(s)
Osteoporosis , RNA, Long Noncoding , Animals , Catechin/analogs & derivatives , Cell Differentiation/genetics , Mice , Osteoblasts , Osteoporosis/drug therapy , Osteoporosis/genetics , Osteoporosis/metabolism , RNA, Long Noncoding/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology
6.
Front Cell Infect Microbiol ; 12: 802147, 2022.
Article in English | MEDLINE | ID: mdl-35310850

ABSTRACT

Owing to the outbreak of the novel coronavirus (SARS-CoV-2) worldwide at the end of 2019, the development of a SARS-CoV-2 vaccine became an urgent need. In this study, we developed a type 9 adeno-associated virus vectored vaccine candidate expressing a dimeric receptor binding domain (RBD) of the SARS-CoV-2 spike protein (S protein) and evaluated its immunogenicity in a murine model. The vaccine candidate, named AAV9-RBD virus, was constructed by inserting a signal peptide to the N-terminus of two copies of RBD, spaced by a linker, into the genome of a type 9 adeno-associated virus. In vitro assays showed that HeLa cells infected by the recombinant AAV virus expressed high levels of the recombinant RBD protein, mostly found in the cell culture supernatant. The recombinant AAV9-RBD virus was cultured and purified. The genome titer of the purified recombinant AAV9-RBD virus was determined to be 2.4 × 1013 genome copies/mL (GC/mL) by Q-PCR. Balb/c mice were immunized with the virus by intramuscular injection or nasal drip administration. Eight weeks after immunization, neutralizing antibodies against the new coronavirus pseudovirus were detected in the sera of all mice; the mean neutralizing antibody EC50 values were 517.7 ± 292.1 (n=10) and 682.8 ± 454.0 (n=10) in the intramuscular injection group and nasal drip group, respectively. The results of this study showed that the recombinant AAV9-RBD virus may be used for the development of a SARS-CoV-2 vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , COVID-19/prevention & control , Dependovirus/genetics , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
7.
Molecules ; 25(17)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32878126

ABSTRACT

Recombinant human IFNα2b (rhIFNα2b), as an important immune-related protein, has been widely used in clinic for decades. It is also at the forefront of the recent emergence of biosimilar medicines, with numerous products now available worldwide. Although with the same amino acid sequence, recombinant proteins are generally heterogeneous due to post-translational modification and chemical reactions during expression, purification, and long-term storage, which could have significant impact on the final product quality. So therapeutic rhIFNα2b must be closely monitored to ensure consistency, safety, and efficacy. In this study, we compared seven rhIFNα2b preparations from six manufacturers in China and one in America, as well as four batches of rhIFNα2b preparations from the same manufacturer, measuring IFNα2b variants and site-specific modifications using a developed LC/Q-TOF approach. Three main forms of N-terminus, cysteine, methionine, and acetylated cysteine were detected in five rhIFNα2b preparations produced in E. coli (1E~5E) and one in Pseudomonas (6P), but only the native form with N-terminal cysteine was found in rhIFNα2b preparation produced in Saccharomyces cerevisiae (7Y). Two samples with the lowest purity (4E and 6P), showed the highest level of acetylation at N-terminal cysteine and oxidation at methionine. The level of oxidation and deamidation varied not only between samples from different manufacturers but also between different batches of the same manufacturer. Although variable between samples from different manufacturers, the constitution of N-terminus and disulfide bonds was relatively stable between different batches, which may be a potential indicator for batch consistency. These findings provide a valid reference for the stability evaluation of the production process and final products.


Subject(s)
Chromatography, Liquid , Interferon alpha-2/analysis , Interferon alpha-2/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Acetylation , Humans , Interferon alpha-2/standards , Oxidation-Reduction , Peptides/analysis , Peptides/chemistry
8.
Molecules ; 24(21)2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31731431

ABSTRACT

Soluble glycoprotein 130 kDa (sgp130)-Fc fusion protein, an innovative therapeutic bio-macromolecular drug specifically targeting IL-6 trans-signaling, proved to have good potential for application in the treatment of chronic inflammatory diseases. A simple and quick bioassay for sgp130-Fc was developed in this study. First, a stable reporter cell line was obtained by transfecting CHO-K1 cells with a sis-inducible element (SIE)-driving luciferase reporter gene (CHO/SIE-Luc). Sgp130-Fc could inhibit the expression of luciferase induced by IL-6/sIL-6Rα complex, and the dose-response curve fitted the four-parameter logistic model, with 50% inhibitive concentration (IC50) being about 500 ng/mL and detection range between 40 and 5000 ng/mL. Both the intra-assay and inter-assay coefficient of variation (CV) were below 10.0%, and the accuracy estimates ranged from 94.1% to 106.2%. The assay indicated a good linearity (R² = 0.99) in the range of 50% to 150% of optimized initial concentration. No significant difference was found between the test results of new assay and BAF3/gp130 proliferation assay (unpaired t test, p = 0.4960, n = 6). The dose-response effect and copy number of the luciferase gene was basically unchanged after long-term culture (up to passage 60), demonstrating the stability of CHO/SIE-Luc cells. These results suggested that the new reporter assay was suited to routine potency determination of therapeutic sgp130-Fc.


Subject(s)
Biological Assay/methods , Inflammation/drug therapy , Interleukin-6/genetics , Recombinant Fusion Proteins/isolation & purification , Animals , CHO Cells , Cricetulus , Gene Expression Regulation/drug effects , Humans , Inflammation/pathology , Inhibitory Concentration 50 , Interleukin-6/antagonists & inhibitors , Luciferases/genetics , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Recombinant Fusion Proteins/pharmacology
9.
Int J Med Sci ; 16(7): 1032-1041, 2019.
Article in English | MEDLINE | ID: mdl-31341417

ABSTRACT

AP25 is an anti-tumor peptide with a high affinity for integrins. It exerts its anti-tumor activity by inhibiting angiogenesis and by directly inhibiting the growth of tumor cells. Its half-life time in vivo is only about 50 minutes, which limits its clinical application. In order to prolong the half-life time of AP25 while preserving its anti-tumor activity, several fusion proteins of AP25 and IgG4 Fc were designed and expressed; their anti-tumor activity and pharmacokinetics properties were evaluated. Firstly, four AP25-Fc fusion protein sequences were designed, and the corresponding proteins were expressed and purified. Based on the results of HUVEC migration inhibition assay, HUVEC and tumor cell proliferation inhibition assay and yields of expression by HEK293 cells, the fusion protein designated PSG4R was selected for further evaluation. The anti-tumor effect of PSG4R was then evaluated in vivo on HCT-116 nude mice xenograft model. And the pharmacokinetics properties of PSG4R were investigated in rats. The results showed that PSG4R could inhibit the growth of xenografts of human colon cancer cell line HCT-116 in nude mice by intravenous administration of 40 mg/kg once every two days. The half-life time of PSG4R was 56.270 ± 15.398 h. This study showed that the construction of AP25-Fc fusion protein could significantly prolong the half-life of AP25 while retaining its anti-tumor activity, which provides a new direction for new drug development of AP25.


Subject(s)
Endostatins/pharmacology , Immunoconjugates/pharmacology , Immunoglobulin G/pharmacology , Neoplasms/drug therapy , Peptide Fragments/pharmacology , Recombinant Fusion Proteins/pharmacology , Administration, Intravenous , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Endostatins/genetics , Endostatins/therapeutic use , Female , HCT116 Cells , HEK293 Cells , Half-Life , Human Umbilical Vein Endothelial Cells , Humans , Immunoconjugates/genetics , Immunoconjugates/therapeutic use , Immunoglobulin G/genetics , Immunoglobulin G/therapeutic use , Male , Mice , Models, Animal , Neoplasms/pathology , Peptide Fragments/genetics , Peptide Fragments/therapeutic use , Rats , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/therapeutic use , Treatment Outcome , Xenograft Model Antitumor Assays
10.
Yao Xue Xue Bao ; 50(1): 75-80, 2015 Jan.
Article in Chinese | MEDLINE | ID: mdl-25924479

ABSTRACT

The study aims to characterize and compare interferon reference standards from 5 manufacturers. By testing molecular mass and trypsin-digested peptide mass mapping, the amino acid sequence was verified and post-translational modifications such as disulfide bond were identified. Results show that the molecular mass and amino acid sequence were consistent with theory; the disulfide bonds of 4 lots of interferon were Cys1-Cys98/Cys29-Cys138, 1 lot was Cys29-Cys139/Cys86-Cys99; N-terminal "+Met", acetyl N-terminal and Met oxidation were identified in part of the sample. UPLC-MS can be used to characterize and compare interferon reference standards from different manufacturers.


Subject(s)
Chromatography, High Pressure Liquid/methods , Interferons/standards , Mass Spectrometry/methods , Amino Acid Sequence , Molecular Weight , Oxidation-Reduction , Peptide Mapping , Protein Processing, Post-Translational , Reference Standards
11.
Cancer Cell Int ; 14(1): 8, 2014 Jan 27.
Article in English | MEDLINE | ID: mdl-24467885

ABSTRACT

OBJECTIVE: A recombinant antitumor/antiviral protein (Novaferon, Nova) is a new type of interferon, which is produced by artificial design technology combining DNA-shuffling and High Throughput Screening (HTS). METHODS: The in vitro biological activities, such as anti-tumor activity and antiviral activity of Nova and recombinant human interferon alpha-2b (rhIFN-α2b) was performed; in vivo anti-tumor activity in nude mice was also tested. Flow cytometry, histo-pathological analysis including HE staining and immunohistochemistry, and surface plasmon resonance assay were performed to investigate the underlying mechanisms analysis. RESULTS: Nova exhibited stronger anti-cancer effects compared to rhIFN-α2b in vitro and in vivo. The antitumor mechanisms of Nova may be related to S phase arrest, pro-apoptosis, and inhibition of tumor angiogenesis. Moreover, Nova exhibited a higher binding affinity for IFN receptor 2 (IFNR2) than rhIFN-α2b, which is one of the possible reasons accounting for its stronger actions against tumor cells compared with rhIFN-α2b. CONCLUSION: Nova has strong antitumor activity and could be a potentially effective therapeutic drug for cancer.

12.
Yao Xue Xue Bao ; 47(2): 216-22, 2012 Feb.
Article in Chinese | MEDLINE | ID: mdl-22512034

ABSTRACT

The amino acid sequence of the fusion protein FP3 was measured by two types of LC-MS/MS and its primary structure was confirmed. After reduction and alkylation, the protein was digested with trypsin and glycosyl groups in glycopeptide were removed by PNGase F. The mixed peptides were separated by LC, then Q-TOF and Ion trap tandem mass spectrometry were used to measure b, y fragment ions of each peptide to analyze the amino acid sequence of fusion protein FP3. Seventy-six percent of full amino acid sequence of the fusion protein FP3 was measured by LC-ESI-Q-TOF with the remaining 24% completed by LC-ESI-Trap. As LC-MS and tandem mass spectrometry are rapid, sensitive, accurate to measure the protein amino acid sequence, they are important approach to structure analysis and identification of recombinant protein.


Subject(s)
Recombinant Fusion Proteins/chemistry , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Amino Acid Sequence , Chromatography, High Pressure Liquid , Molecular Sequence Data , Peptide Mapping , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , Vascular Endothelial Growth Factor A/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...