Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(3): e2203623, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35924412

ABSTRACT

Polymer-based dielectrics have received intensive interest from academic community in the field of high-power energy storage owing to their superior flexibility and fast charge-discharge ability. Recently, how to suppress the loss of polymer-based dielectrics has been increasingly recognized as a critical point to attain a high charge-discharge efficiency in the film capacitors. Some achievements are made in analyzing the source of loss and suppressing loss via Edison's trial and error method. In this review, the significance of suppressing loss in polymer-based dielectrics is firstly emphasized. Then, different sources of loss are discussed carefully and an in-depth analysis of the related measurements is presented. Next, recent research results in suppressing loss are summarized and discussed in detail according to different strategies. Finally, the challenges and opportunities in the loss suppression research for the rational design of high-efficiency polymer-based dielectrics are proposed.

2.
Chem Rev ; 122(3): 3820-3878, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-34939420

ABSTRACT

With the development of advanced electronic devices and electric power systems, polymer-based dielectric film capacitors with high energy storage capability have become particularly important. Compared with polymer nanocomposites with widespread attention, all-organic polymers are fundamental and have been proven to be more effective choices in the process of scalable, continuous, and large-scale industrial production, leading to many dielectric and energy storage applications. In the past decade, efforts have intensified in this field with great progress in newly discovered dielectric polymers, fundamental production technologies, and extension toward emerging computational strategies. This review summarizes the recent progress in the field of energy storage based on conventional as well as heat-resistant all-organic polymer materials with the focus on strategies to enhance the dielectric properties and energy storage performances. The key parameters of all-organic polymers, such as dielectric constant, dielectric loss, breakdown strength, energy density, and charge-discharge efficiency, have been thoroughly studied. In addition, the applications of computer-aided calculation including density functional theory, machine learning, and materials genome in rational design and performance prediction of polymer dielectrics are reviewed in detail. Based on a comprehensive understanding of recent developments, guidelines and prospects for the future development of all-organic polymer materials with dielectric and energy storage applications are proposed.

3.
Nat Commun ; 12(1): 4517, 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34312391

ABSTRACT

Dielectric elastomer actuators (DEAs) with large electrically-actuated strain can build light-weight and flexible non-magnetic motors. However, dielectric elastomers commonly used in the field of soft actuation suffer from high stiffness, low strength, and high driving field, severely limiting the DEA's actuating performance. Here we design a new polyacrylate dielectric elastomer with optimized crosslinking network by rationally employing the difunctional macromolecular crosslinking agent. The proposed elastomer simultaneously possesses desirable modulus (~0.073 MPa), high toughness (elongation ~2400%), low mechanical loss (tan δm = 0.21@1 Hz, 20 °C), and satisfactory dielectric properties ([Formula: see text] = 5.75, tan δe = 0.0019 @1 kHz), and accordingly, large actuation strain (118% @ 70 MV m-1), high energy density (0.24 MJ m-3 @ 70 MV m-1), and rapid response (bandwidth above 100 Hz). Compared with VHBTM 4910, the non-magnetic motor made of our elastomer presents 15 times higher rotation speed. These findings offer a strategy to fabricate high-performance dielectric elastomers for soft actuators.

4.
Macromol Rapid Commun ; 42(12): e2100116, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33938056

ABSTRACT

Polymer-based film capacitors with high breakdown strength and excellent flexibility are crucial in the field of advanced electronic devices and electric power systems. Although massive works are carried to enhance the energy storage performances, it is still a great challenge to improve the energy density of polymer composites under the premise of large-scale industrial production. Herein, a general strategy is proposed to improve the intrinsic breakdown strength and energy storage performances by blending core-shell structured methyl methacrylate-butadiene-styrene (MBS) rubber particles into a polymer matrix. Good compatibility and uniform dispersion state of MBS particles are observed in the matrix. Polarizing microscopy images show that blended films exhibit clear reduction of crystalline grains with the addition of MBS particles. Accordingly, an increased breakdown strength of 515 MV m-1 and discharged energy density of 12.33 J cm-3 are observed in poly(vinylidene fluoride-co-hexafluoropropylene)-based composite films. Through comprehensive characterizations, it is believed that the superior energy storage performance of composite films is attributed to decreased crystalline grains, improved mechanical properties, and restriction on carrier motion. These results provide a novel design of dielectric polymers for high breakdown strength and discharged energy density applications.


Subject(s)
Electricity , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...