Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Front Endocrinol (Lausanne) ; 15: 1308208, 2024.
Article in English | MEDLINE | ID: mdl-38818502

ABSTRACT

Objective: Hypothyroidism, characterized by reduced thyroid hormone levels, and endometrial cancer, a prevalent gynecological malignancy, have been suggested to have a potential association in previous observational studies. However, the causal relationship between them remains uncertain. This study aimed to investigate the causal relationship between hypothyroidism and endometrial cancer using a bilateral Mendelian randomization approach. Methods: A bidirectional two-sample Mendelian randomization study was conducted using summary statistics from genome-wide association studies to identify genetic variants associated with hypothyroidism and endometrial cancer. The inverse variance weighting method was used as the main analysis, and sensitivity analyses were conducted to validate the MR results. Results: The results of our analysis did not support a causal effect of hypothyroidism (OR: 0.93, p=0.08) or autoimmune hypothyroidism (OR: 0.98, p=0.39) on endometrial cancer risk. In the reverse MR analysis, we did not find a significant causal effect of endometrial cancer on hypothyroidism (OR: 0.96, p=0.75) or autoimmune hypothyroidism (OR: 0.92, p=0.50). Based on subgroup analysis by pathological subtypes of endometrial cancer, the above findings were further substantiated (all p-value >0.05). Conclusions: Our Mendelian randomization analysis suggests a lack of causal association between hypothyroidism and endometrial cancer. To gain a deeper understanding of this association, it is essential to conduct large-scale randomized controlled trials in the future to validate our findings.


Subject(s)
Endometrial Neoplasms , Genome-Wide Association Study , Hypothyroidism , Mendelian Randomization Analysis , Humans , Female , Endometrial Neoplasms/genetics , Endometrial Neoplasms/epidemiology , Hypothyroidism/genetics , Hypothyroidism/epidemiology , Polymorphism, Single Nucleotide , Risk Factors
3.
J Exp Clin Cancer Res ; 43(1): 74, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459595

ABSTRACT

Glutamine metabolism plays a pivotal role in cancer progression, immune cell function, and the modulation of the tumor microenvironment. Dysregulated glutamine metabolism has been implicated in cancer development and immune responses, supported by mounting evidence. Cancer cells heavily rely on glutamine as a critical nutrient for survival and proliferation, while immune cells require glutamine for activation and proliferation during immune reactions. This metabolic competition creates a dynamic tug-of-war between cancer and immune cells. Targeting glutamine transporters and downstream enzymes involved in glutamine metabolism holds significant promise in enhancing anti-tumor immunity. A comprehensive understanding of the intricate molecular mechanisms underlying this interplay is crucial for developing innovative therapeutic approaches that improve anti-tumor immunity and patient outcomes. In this review, we provide a comprehensive overview of recent advances in unraveling the tug-of-war of glutamine metabolism between cancer and immune cells and explore potential applications of basic science discoveries in the clinical setting. Further investigations into the regulation of glutamine metabolism in cancer and immune cells are expected to yield valuable insights, paving the way for future therapeutic interventions.


Subject(s)
Glutamine , Neoplasms , Humans , Glutamine/metabolism , Neoplasms/pathology , Energy Metabolism , Tumor Microenvironment
4.
Eur J Nucl Med Mol Imaging ; 51(4): 1109-1120, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38030744

ABSTRACT

PURPOSE: Radiation-induced lung injury (RILI) is a severe side effect of radiotherapy (RT) for thoracic malignancies and we currently lack established methods for the early detection of RILI. In this study, we synthesized a new tracer, [18F]AlF-NOTA-QHY-04, targeting C-X-C-chemokine-receptor-type-4 (CXCR4) and investigated its feasibility to detect RILI. METHODS: An RILI rat model was constructed and scanned with [18F]AlF-NOTA-QHY-04 PET/CT and [18F]FDG PET/CT periodically after RT. Dynamic, blocking, autoradiography, and histopathological studies were performed on the day of peak uptake. Fourteen patients with radiation pneumonia, developed during or after thoracic RT, were subjected to PET scan using [18F]AlF-NOTA-QHY-04. RESULTS: The yield of [18F]AlF-NOTA-QHY-04 was 28.5-43.2%, and the specific activity was 27-33 GBq/µmol. [18F]AlF-NOTA-QHY-04 was mainly excreted through the kidney. Significant increased [18F]AlF-NOTA-QHY-04 uptake in the irradiated lung compared with that in the normal lung in the RILI model was observed on day 6 post-RT and peaked on day 14 post-RT, whereas no apparent uptake of [18F]FDG was shown on days 7 and 15 post-RT. MicroCT imaging did not show pneumonia until 42 days post-RT. Significant intense [18F]AlF-NOTA-QHY-04 uptake was confirmed by autoradiography. Immunofluorescence staining demonstrated expression of CXCR4 was significantly increased in the irradiated lung tissue, which correlated with results obtained from hematoxylin-eosin and Masson's trichrome staining. In 14 patients with radiation pneumonia, maximum standardized uptake values (SUVmax) were significantly higher in the irradiated lung compared with those in the normal lung. SUVmax of patients with grade 2 RILI was significantly higher than that of patients with grade 1 RILI. CONCLUSION: This study indicated that [18F]AlF-NOTA-QHY-04 PET/CT imaging can detect RILI non-invasively and earlier than [18F]FDG PET/CT in a rat model. Clinical studies verified its feasibility, suggesting the clinical potential of [18F]AlF-NOTA-QHY-04 as a PET/CT tracer for early monitoring of RILI.


Subject(s)
Lung Injury , Radiation Injuries , Radiation Pneumonitis , Humans , Rats , Animals , Positron Emission Tomography Computed Tomography/methods , Fluorodeoxyglucose F18 , Lung Injury/diagnostic imaging , Lung Injury/etiology , Positron-Emission Tomography/methods , Lung/diagnostic imaging , Receptors, CXCR4
5.
Front Immunol ; 14: 1246682, 2023.
Article in English | MEDLINE | ID: mdl-37744371

ABSTRACT

Since the successful application of messenger RNA (mRNA) vaccines in preventing COVID-19, researchers have been striving to develop mRNA vaccines for clinical use, including those exploited for anti-tumor therapy. mRNA cancer vaccines have emerged as a promising novel approach to cancer immunotherapy, offering high specificity, better efficacy, and fewer side effects compared to traditional treatments. Multiple therapeutic mRNA cancer vaccines are being evaluated in preclinical and clinical trials, with promising early-phase results. However, the development of these vaccines faces various challenges, such as tumor heterogeneity, an immunosuppressive tumor microenvironment, and practical obstacles like vaccine administration methods and evaluation systems for clinical application. To address these challenges, we highlight recent advances from preclinical studies and clinical trials that provide insight into identifying obstacles associated with mRNA cancer vaccines and discuss potential strategies to overcome them. In the future, it is crucial to approach the development of mRNA cancer vaccines with caution and diligence while promoting innovation to overcome existing barriers. A delicate balance between opportunities and challenges will help guide the progress of this promising field towards its full potential.


Subject(s)
COVID-19 , Cancer Vaccines , Neoplasms , Humans , COVID-19/prevention & control , Neoplasms/genetics , Neoplasms/therapy , mRNA Vaccines , RNA, Messenger/genetics , RNA, Messenger/therapeutic use , Tumor Microenvironment
6.
Comput Biol Med ; 165: 107415, 2023 10.
Article in English | MEDLINE | ID: mdl-37657356

ABSTRACT

BACKGROUND: In recent years, targeting glutamine metabolism has gained attention as a promising therapeutic approach. Glutamine catabolic-related enzymes play a crucial role in modulating glutamine metabolism and influencing immune responses in the tumor immune microenvironment (TME). However, current literature on the function of glutamine catabolic enzymes in lung adenocarcinoma (LUAD) is limited. METHODS: We validated the glutamine dependency of LUAD cells in vitro, followed by transcriptome data to identify differentially expressed genes (DEGs), with transcriptome and single-cell data analysis utilized to explore the role of such genes within the tumor immune microenvironment. We performed employed subcutaneous injection of lewis lung carcinoma cells in C57BL/6 mice to confirm the role of candidate genes in tumor growth and anti-tumor immunity. RESULTS: Our study revealed that glutamine is essential for the growth of LUAD cells. Subsequently, we identified four DEGs - glutamate pyruvate transaminase 1 (GPT1), glutamate pyruvate transaminase 2 (GPT2), glutamic-oxaloacetic transaminase 1 (GOT1), and glutamic-oxaloacetic transaminase 2 (GOT2) - in LUAD patients, which were highly expressed in tumor tissue and associated with an immunosuppressive TME. Single-cell sequencing analysis detected high expression levels of GOT1 and GOT2 in immune and stromal cell subpopulations, while GPT1 and GPT2 showed relatively lower expression. Based on the lower immune score and lower expression in immune and stromal cells, we validated the role of GPT2 in vivo for modulating the TME and tumor growth. Inhibition of GPT2 resulted in suppressed tumor growth and increased the expression of CD4 and CD8. Additionally, GPT2 inhibitors induced a stronger antitumor immunity when used in combination with anti-programmed cell death ligand 1. CONCLUSION: This study is the first to show the critical role of glutamine catabolic-related enzymes in the TME, and identified GPT2 as a promising therapeutic target for inhibiting tumor growth and improving anti-tumour immune responses for LUAD. Additional studies will be required to define the roles glutamine catabolic-related enzymes play in LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Mice , Animals , Humans , Mice, Inbred C57BL , Glutamine , Adenocarcinoma of Lung/genetics , Immunotherapy , Aspartate Aminotransferase, Cytoplasmic , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Glutamates , Pyruvates , Tumor Microenvironment , Transaminases/genetics
7.
Article in English | MEDLINE | ID: mdl-37548860

ABSTRACT

Cardiodynamicsgram (CDG) has emerged recently as a noninvasive spatiotemporal electrocardiographic method for subtle cardiac dynamics information analysis within electrocardiogram (ECG). This study explored the feasibility of CDG for detecting radiation-induced heart damage (RIHD) in a rat model. A single radiation dose of 40 Gy was delivered to the cardiac apex of female Wistar rats. First, CDG was generated through dynamic modeling of ECG signals using the deterministic learning algorithm. Furthermore, CDG indexes were calculated using the wavelet transform and entropy. In this model, CDG entropy indexes decreased significantly after radiotherapy. The shape of CDG changed significantly after radiotherapy (irregular shape) compared with controls (regular shape). Macrophage and fibrosis in myocardium of rats increased significantly after radiotherapy. CDG changes after radiotherapy were significantly correlated with histopathological changes and occurred significantly earlier than histopathological changes. This study provides an experimental basis for the clinical application of CDG for the early detection of RIHD.

8.
Biochimie ; 211: 68-77, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36924820

ABSTRACT

Oxidative stress is one of the elements causing aging and related diseases. Inhibiting Nrf2 activity or increasing oxidative pressure can replicate the deficits of premature aging. SIRT6 is one of the few proteins that can regulate both life span and aging. Deletion of SIRT6 in human cells impairs the antioxidant capacity of cells, which results in the accumulation of intracellular reactive oxygen species and DNA oxidation products. Characterization of the binding of Nrf2 with SIRT6 is critical for understanding the modulation of Nrf2-correlated cell activities by SIRT6. The yeast two-hybrid experiments showed that the binding of Nrf2 with SIRT6 is mediated by Neh1 and Neh3 domains. The elimination of the Neh1 and Neh3 domains decreased the binding stability and free energy, according to the molecular dynamic analysis. The roles of theses domains in mediating the binding were confirmed by co-immunoprecipitation. In cells transfected with the small interfering RNA (siRNA) targeting the Nrf2 Neh1 domain and plasmids overexpressing domain-mutant Nrf2, it was discovered that Nrf2 lost its activity to stimulate the transcription of antioxidant genes in the absence of Neh1 and Neh3 domains.


Subject(s)
NF-E2-Related Factor 2 , Sirtuins , Humans , Antioxidants/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , RNA, Small Interfering/metabolism , Sirtuins/genetics , Sirtuins/metabolism
9.
Front Oncol ; 13: 1083417, 2023.
Article in English | MEDLINE | ID: mdl-36741027

ABSTRACT

Background: To date, identifying resectable stage I non-small cell lung cancer (NSCLC) patients likely to benefit from adjuvant therapy (ADT) remains a major challenge. Previous studies suggest that circulating tumor DNA (ctDNA) is emerging as a promising biomarker for NSCLC. However, the effectiveness of ctDNA detection in guiding ADT for resectable stage I NSCLC patients remains elusive. This study aimed to elucidate the role of ctDNA detection in estimating prognosis and guiding ADT for resectable stage I NSCLC patients. Methods: Individual patient data and ctDNA results data were collected from 270 patients across four independent cohorts. The detection of ctDNA was conducted at 3 days to 1 month after surgery. The endpoint for this study was relapse-free survival (RFS) and overall survival (OS). Results: Of the 270 resectable stage I NSCLC patients, 9 patients with ctDNA-positive and 261 patients with ctDNA-negative. We found that the risk of recurrence was significantly lower in the ctDNA-negative group compared to the ctDNA-positive group(HR=0.11, p<0.0001). However, there is no difference in the risk of death between the two groups (p =0.39). In the ctDNA-positive group, there were no significant differences in RFS between patients who received ADT and patients who did not receive ADT (p =0.58). In the ctDNA-negative group, those who received ADT had a worse RFS in comparison with those who did not receive ADT (HR=2.36, p =0.029). No difference in OS was seen between patients who received ADT and patients who did not receive ADT in both the ctDNA-positive group and the ctDNA-negative group (All p values>0.05). Furthermore, there was no difference in RFS and OS between patients who received chemotherapy-based or tyrosine kinase inhibitor-based ADT and patients who did not receive ADT in both the ctDNA-positive group and the ctDNA-negative group (All p values>0.05). Conclusions: Postoperative ctDNA detection can be a prognostic marker to predict recurrence but has limited effects in guiding ADT for resectable stage I NSCLC. Future prospective investigations are needed to verify these results.

10.
Eur J Nucl Med Mol Imaging ; 50(2): 453-464, 2023 01.
Article in English | MEDLINE | ID: mdl-36121463

ABSTRACT

PURPOSE: Retrospective analysis revealed increased [18F]AlF-NOTA-FAPI-04 uptake in the myocardium of patients with esophageal squamous cell cancer (ESCC) treated with concurrent chemoradiotherapy (CCRT). This study investigated and verified the feasibility of [18F]AlF-NOTA-FAPI-04 PET/CT for detecting radiation-induced myocardial damage (RIMD). METHODS: Myocardial FAPI uptake was analyzed before and during radiotherapy in thirteen ESCC patients treated with CCRT. In the animal study, a single dose of 50 Gy was delivered to the cardiac apex of Wistar rats (24 rats, including 16 RIMD model rats and 8 control model rats). RIMD model rats were scanned with [18F]AlF-NOTA-FAPI-04 PET/CT weekly for 12 weeks, and left ventricular ejection fraction (LVEF) was measured by magnetic resonance imaging. Dynamic, blocking, and [18F]FDG PET/CT studies (4 rats/group) were performed on RIMD rats at 5 weeks post-radiation, and histopathological analyses were conducted. RESULTS: Increased FAPI uptake in the myocardium was found after CCRT (1.53 ± 0.53 vs 1.88 ± 0.70, P = 0.015). In RIMD rats, significantly increased FAPI uptake in the damaged myocardium was observed from the 2nd week post-radiation exposure and peaked in the 5th week. Significantly more intense tracer accumulation was observed in the damaged myocardium than in the remote myocardium, as identified by decreased [18F]FDG uptake and confirmed by autoradiography, hematoxylin-eosin, Masson's trichrome, and immunohistochemical staining. The LVEF remained unchanged at the 3rd week post-radiation exposure but was remarkably decreased compared with that in the control group at the 8th week. CONCLUSION: Through clinical phenomena and animal experimental studies, this study indicated that [18F]AlF-NOTA-FAPI-04 PET/CT imaging can detect RIMD noninvasively and before a decrease in LVEF, indicating the clinical potential of [18F]AlF-NOTA-FAPI-04 as a PET/CT tracer for early monitoring of RIMD.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Quinolines , Animals , Rats , Positron Emission Tomography Computed Tomography , Fluorodeoxyglucose F18 , Retrospective Studies , Stroke Volume , Rats, Wistar , Ventricular Function, Left , Early Detection of Cancer , Myocardium , Positron-Emission Tomography , Gallium Radioisotopes
11.
Crit Rev Oncol Hematol ; 177: 103771, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35905822

ABSTRACT

This study was undertaken to evaluate the prognostic significance of circulating tumour DNA (ctDNA) detection at different time periods in resectable non-small cell lung cancer (NSCLC). A comprehensive search strategy was conducted through the electronic platforms published up to June 2022. In total, 7 studies with 1138 patients were included. Patients with positive ctDNA have an increased risk of recurrence and mortality. The association between risk of recurrence and detectable ctDNA after surgery 3 days-2 weeks and 1-3 months was stronger than detected at 1 week before surgery. The predictive value of longitudinal detection ctDNA for recurrence and mortality was not stronger than at other time periods. In conclusion, ctDNA is a promising biomarker for predictive recurrence and survival in resectable NSCLC patients. The ctDNA detection after surgery 3 days-2 weeks with more reliably and feasible in identifying resectable NSCLC patients at high risk for recurrence.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/surgery , Circulating Tumor DNA/genetics , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/surgery , Mutation , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Prognosis
12.
Eur J Nucl Med Mol Imaging ; 49(8): 2761-2773, 2022 07.
Article in English | MEDLINE | ID: mdl-35262766

ABSTRACT

PURPOSE: In this pilot study, we developed a new tracer, [18F]AlF-labeled FAPI-04 chelated with NOTA, denoted as [18F]AlF-NOTA-FAPI-04, and tested the specificity, biodistribution, and clinical application for PET/computed tomography (CT) imaging of various types of cancers in patients. METHODS: In vitro binding specificity of FAPI-04 to FAP was verified in U87 cells confocal of a fluorescence-labeled variant. In vivo imaging, competition, and dynamic scanning analyses were conducted to evaluate [18F]AlF-NOTA-FAPI-04 imaging in xenograft mouse model using small-animal PET/CT. The application of [18F]AlF-NOTA-FAPI-04 was analyzed by imaging different types of cancers in patients. RESULTS: Both in vitro and in vivo results showed high binding specificity of FAPI-04 to FAP. High intratumoral uptake and fast body clearance of the tracer were observed in the xenograft mouse model and cancer patients. High-contrast images and negligible radiation exposure to normal tissue were observed on [18F]AlF-NOTA-FAPI-04 PET/CT in 28 patients with 8 different types of cancers. Five of 28 patients underwent PET/CT scanning at 1 h, 2 h, and 4 h after intravenous injection of [18F]AlF-NOTA-FAPI-04. Seven patients with advanced lung cancer underwent dual-tracer imaging, and 44 and 37 metastatic lesions were detected by [18F]AlF-NOTA-FAPI-04 PET/CT and [18F]F-FDG PET/CT, respectively. Overall, 80.0% of metastatic lesions was identified by both [18F]AlF-NOTA-FAPI-04 and 18F-FDG, 17.8% by [18F]AlF-NOTA-FAPI-04 PET/CT only, and 2.2% by [18F]FDG PET/CT only. CONCLUSION: [18F]AlF-NOTA-FAPI-04 offers high specificity as a tracer for FAP imaging and allows fast imaging with high contrast in tumors. [18F]AlF-NOTA-FAPI-04 is better at identifying metastatic lesions in patients with advanced lung cancer than [18F]FDG, and its use may facilitate tumor staging.


Subject(s)
Fluorodeoxyglucose F18 , Lung Neoplasms , Animals , Heterocyclic Compounds, 1-Ring , Humans , Lung Neoplasms/diagnostic imaging , Mice , Pilot Projects , Positron Emission Tomography Computed Tomography/methods , Quinolines , Tissue Distribution , Tomography, X-Ray Computed
13.
Br J Pharmacol ; 179(14): 3740-3753, 2022 07.
Article in English | MEDLINE | ID: mdl-35135035

ABSTRACT

BACKGROUND AND PURPOSE: Hirudin variants are the most powerful thrombin inhibitors discovered to date, with a lower risk of bleeding than heparin. For anticoagulation, the C-termini of hirudin variants bind to the exocite I of thrombin. Anticoagulant effects of gene-recombinant hirudin are weaker than natural hirudin for the reason of lacking tyrosine O-sulfation at C-terminus. EXPERIMENTAL APPROACH: An integrative pharmacological study was carried out using molecular dynamic, molecular biological and in vivo and in vitro experiments to elucidate the anticoagulant effects of protein-engineered hirudins. KEY RESULTS: Molecular dynamic analysis showed that modifications of the C-termini of hirudin variant 1 of Hirudo medicinalis (HV1) and hirudin variant 2 of Hirudinaria manillensis (HM2) changed the binding energy of the C-termini to human thrombin. The study indicated that Asp61 of HM2 that corresponds to sulfated Tyr63 of HV1 is critical for inhibiting thrombin activities. Further, the anticoagulant effects of HV1 and HM2 were improved when the amino acid residues adjacent to Asp61 were mutated to Asp. These improvements were prolongation of the activated partial thromboplastin time, prothrombin time and thrombin time of human blood, and decreased Ki and IC50 values. In the in vivo experiments, mutations at C-termini of HV1 and HM2 significantly changed partial thromboplastin time, prothrombin and thrombin time CONCLUSION AND IMPLICATIONS: The study indicated that the anticoagulant effects of gene-engineered HM2 are stronger than gene-engineered HV1 and HM2-E60D-I62D has the strongest effects and could be an antithrombotic with better therapeutic effects.


Subject(s)
Hirudins , Hirudo medicinalis , Amino Acid Sequence , Animals , Anticoagulants/pharmacology , Hirudins/chemistry , Hirudins/pharmacology , Hirudo medicinalis/chemistry , Humans , Molecular Dynamics Simulation , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Thrombin
14.
J Diabetes Res ; 2022: 1863429, 2022.
Article in English | MEDLINE | ID: mdl-36589630

ABSTRACT

Diabetes is a metabolic disease that raises the risk of microvascular and neurological disorders. Insensitivity to insulin is a characteristic of type II diabetes, which accounts for 85-90 percent of all diabetic patients. The fundamental molecular factor of insulin resistance may be impaired cell signal transduction mediated by the insulin receptor (IR). Several cell-signaling proteins, including IR, insulin receptor substrate (IRS), and phosphatidylinositol 3-kinase (PI3K), have been recognized as being important in the impaired insulin signaling pathway since they are associated with a large number of proteins that are strictly regulated and interact with other signaling pathways. Many studies have found a correlation between IR alternative splicing, IRS gene polymorphism, the complicated regulatory function of IRS serine/threonine phosphorylation, and the negative regulatory role of p85 in insulin resistance and diabetes mellitus. This review brings up-to-date knowledge of the roles of signaling proteins in insulin resistance in order to aid in the discovery of prospective targets for insulin resistance treatment.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Diabetes Mellitus, Type 2/genetics , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Phosphoproteins/metabolism , Insulin/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism
15.
Plant Cell Environ ; 44(9): 3015-3033, 2021 09.
Article in English | MEDLINE | ID: mdl-34114251

ABSTRACT

Flavonoids, which modulate plant resistance to various stresses, can be induced by high light. B-box (BBX) transcription factors (TFs) play crucial roles in the transcriptional regulation of flavonoids biosynthesis, but limited information is available on the association of BBX proteins with high light. We present a detailed overview of 45 Populus trichocarpa BBX TFs. Phylogenetic relationships, gene structure, tissue-specific expression patterns and expression profiles were determined under 10 stress or phytohormone treatments to screen candidate BBX proteins associated with the flavonoid pathway. Sixteen candidate genes were identified, of which five were expressed predominantly in young leaves and roots, and BBX23 showed the most distinct response to high light. Overexpression of BBX23 in poplar activated expression of MYB TFs and structural genes in the flavonoid pathway, thereby promoting the accumulation of proanthocyanidins and anthocyanins. CRISPR/Cas9-generated knockout of BBX23 resulted in the opposite trend. Furthermore, the phenotype induced by BBX23 overexpression was enhanced under exposure to high light. BBX23 was capable of binding directly to the promoters of proanthocyanidin- and anthocyanin-specific genes, and its interaction with HY5 enhanced activation activity. We identified novel regulators of flavonoid biosynthesis in poplar, thereby enhancing our general understanding of the transcriptional regulatory mechanisms involved.


Subject(s)
Anthocyanins/metabolism , Plant Proteins/physiology , Populus/radiation effects , Proanthocyanidins/metabolism , Transcription Factors/physiology , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Gene Editing , Gene Expression Regulation, Plant , Gene Knockdown Techniques , Light , Phylogeny , Plant Proteins/metabolism , Populus/genetics , Populus/metabolism , Real-Time Polymerase Chain Reaction , Transcription Factors/metabolism , Transcriptome
16.
Diabetes Metab Syndr Obes ; 13: 3887-3898, 2020.
Article in English | MEDLINE | ID: mdl-33116735

ABSTRACT

INTRODUCTION: This study aimed to investigate the role of ß2 adrenergic receptor (ß2AR) in insulin signaling transduction in H9C2 cardiomyoblast cells to understand the formation of the ß2AR-insulin receptor (IR) protein complex and its role in insulin-induced Glut4 expression. METHODS: H9C2 cells were treated with various protein inhibitors (CGP, ß1AR inhibitor CGP20712; ICI, ß2AR inhibitor ICI 118,551; PKI, PKA inhibitor myristoylated PKI; PD 0325901, MEK inhibitor; SP600125, JNK inhibitor) with or without insulin or isoproterenol (ISO) before RNA-sequencing (RNA-Seq) and quantitative-PCR (Q-PCR). Yeast two-hybrid, co-immunoprecipitation and His-tag pull-down assay were carried out to investigate the formation of the ß2AR-IR protein complex. The intracellular concentrations of cAMP in H9C2 cells were tested by high performance liquid chromatography (HPLC) and the phosphorylation of JNK was tested by Western blot. RESULTS: Gene Ontology (GO) analysis revealed that the most significantly enriched processes in the domain of molecular function (MF) were catalytic activity and binding, whereas in the domain of biological processes (BP) were metabolic process and cellular process. Furthermore, the enriched processes in the domain of cellular components (CC) were cell and cell parts. The Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that the most significant pathways that have been altered included the PI3K-Akt and MAPK signaling pathways. Q-PCR, which was performed to verify the gene expression levels exhibited consistent results. In evaluating the signaling pathways, the sustained stimulation of ß2AR by ISO inhibited insulin signalling, and the effect was primarily through the cAMP-PKA-JNK pathway and MEK/JNK signaling pathway. Yeast two-hybrid, co-immunoprecipitation and His-tag pull-down assay revealed that ß2AR, IR, insulin receptor substrate 1 (IRS1), Grb2-associated binding protein 1 (GAB1) and Grb2 existed in the same protein complex. CONCLUSION: The sustained stimulation of ß2AR might inhibit insulin signaling transduction through the cAMP-PKA-JNK and MEK/JNK pathways in H9C2 cells.

17.
Curr Med Chem ; 27(21): 3555-3576, 2020.
Article in English | MEDLINE | ID: mdl-30963964

ABSTRACT

Gluten triggers Celiac Disease (CD) and type I diabetes in genetically predisposed population of human leukocyte antigen DQ2/DQ8+ and associates with disorders such as schizophrenia and autism. Application of a strict gluten-free diet is the only well-established treatment for patients with CD, whereas the treatment for patients with celiac type I diabetes may be depend on the timing and frequency of the diet. The application of a gluten-free diet in patients with CD may contribute to the development of metabolic syndrome and nonalcoholic fatty liver disease and may also lead to a high glycemic index, low fiber diet and micronutrient deficiencies. The alteration of copper bioavailability (deficient, excess or aberrant coordination) may contribute to the onset and progress of related pathologies. Therefore, nutrient intake of patients on a gluten-free diet should be the focus of future researches. Other gluten-based therapies have been rising with interest such as enzymatic pretreatment of gluten, oral enzyme supplements to digest dietary gluten, gluten removal by breeding wheat varieties with reduced or deleted gluten toxicity, the development of polymeric binders to suppress gluten induced pathology.


Subject(s)
Celiac Disease , Diabetes Mellitus, Type 1 , Diet, Gluten-Free , Energy Intake , Glutens , Humans
18.
Genes (Basel) ; 10(3)2019 03 13.
Article in English | MEDLINE | ID: mdl-30871275

ABSTRACT

Genomic data is a powerful tool. However, the phylogenetic relationships among different ecological races of avocado remain unclear. Here, we used the results from specific length amplified fragment sequencing (SLAF-seq) and transcriptome data to infer the population structure and genetic diversity of 21 avocado cultivars and reconstructed the phylogeny of three ecological races and two interracial hybrids. The results of the three analyses performed (unweighted pair-group methods with arithmetic means (UPGMA) cluster, Principal coordinate analysis (PCoA), and STRUCTURE) based on single nucleotide polymorphisms (SNPs) from SLAF-seq all indicated the existence of two populations based on botanical race: Mexican⁻Guatemalan and West Indian genotype populations. Our results based on SNPs from SLAF-seq indicated that the Mexican and Guatemalan races were more closely related to each other than either was to the West Indian race, which also was confirmed in the UPGMA cluster results based on SNPs from transcriptomic data. SNPs from SLAF-seq provided strong evidence that the Guatemalan, Mexican, and Guatemalan × Mexican hybrid accession possessed higher genetic diversity than the West Indian races and Guatemalan × West Indian hybrid accessions. Six race-specific Kompetitive allele specific PCR (KASP) markers based on SNPs from SLAF-seq were then developed and validated.


Subject(s)
Persea/genetics , Polymorphism, Genetic , Transcriptome , Genetic Markers , Genotyping Techniques/methods , Genotyping Techniques/standards , Persea/classification , Phylogeny , Seed Bank
19.
Front Plant Sci ; 9: 503, 2018.
Article in English | MEDLINE | ID: mdl-29725343

ABSTRACT

Cassava (Manihot esculenta Crantz) is a major tuberous crop produced worldwide. In this study, we sequenced 158 diverse cassava varieties and identified 349,827 single-nucleotide polymorphisms (SNPs) and indels. In each chromosome, the number of SNPs and the physical length of the respective chromosome were in agreement. Population structure analysis indicated that this panel can be divided into three subgroups. Genetic diversity analysis indicated that the average nucleotide diversity of the panel was 1.21 × 10-4 for all sampled landraces. This average nucleotide diversity was 1.97 × 10-4, 1.01 × 10-4, and 1.89 × 10-4 for subgroups 1, 2, and 3, respectively. Genome-wide linkage disequilibrium (LD) analysis demonstrated that the average LD was about ∼8 kb. We evaluated 158 cassava varieties under 11 different environments. Finally, we identified 36 loci that were related to 11 agronomic traits by genome-wide association analyses. Four loci were associated with two traits, and 62 candidate genes were identified in the peak SNP sites. We found that 40 of these genes showed different expression profiles in different tissues. Of the candidate genes related to storage roots, Manes.13G023300, Manes.16G000800, Manes.02G154700, Manes.02G192500, and Manes.09G099100 had higher expression levels in storage roots than in leaf and stem; on the other hand, of the candidate genes related to leaves, Manes.05G164500, Manes.05G164600, Manes.04G057300, Manes.01G202000, and Manes.03G186500 had higher expression levels in leaves than in storage roots and stem. This study provides basis for research on genetics and the genetic improvement of cassava.

20.
PLoS One ; 12(11): e0188261, 2017.
Article in English | MEDLINE | ID: mdl-29190643

ABSTRACT

Troxerutin, a semi-synthetic derivative of the natural bioflavanoid rutin, has been reported to possess many beneficial effects in human bodies, such as vasoprotection, immune support, anti-inflammation and anti-aging. However, the effects of troxerutin on genome-wide transcription in blood cells are still unknown. In order to find out effects of troxerutin on gene transcription, a high-throughput RNA sequencing was employed to analysis differential gene expression in blood cells consisting of leucocytes, erythrocytes and platelets isolated from the mice received subcutaneous injection of troxerutin. Transcriptome analysis demonstrated that the expression of only fifteen genes was significantly changed by the treatment with troxerutin, among which 5 genes were up-regulated and 10 genes were down-regulated. Bioinformatic analysis of the fifteen differentially expressed genes was made by utilizing the Gene Ontology (GO), and the differential expression induced by troxerutin was further evaluated by real-time quantitative PCR (Q-PCR).


Subject(s)
Gene Expression , Hydroxyethylrutoside/analogs & derivatives , Transcriptome , Animals , Hydroxyethylrutoside/pharmacology , Male , Mice , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...