Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(4): 2777-2801, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38323982

ABSTRACT

Activation of the alternative pathways and abnormal signaling transduction are frequently observed in third-generation EGFR-TKIs (epidermal growth factor receptor tyrosine kinase inhibitors)-resistant patients. Wherein, hyperphosphorylation of ACK1 contributes to EGFR-TKIs acquired resistance. Dual inhibition of EGFRL858R/T790M and ACK1 might improve therapeutic efficacy and overcome resistance in lung cancers treatment. Here, we identified a EGFRL858R/T790M/ACK1 dual-targeting compound 21a with aminoquinazoline scaffold, which showed excellent inhibitory activities against EGFRL858R/T790M (IC50 = 23 nM) and ACK1 (IC50 = 263 nM). The cocrystal and docking analysis showed that 21a occupied the ATP binding pockets of EGFRL858R/T790M and ACK1. Moreover, 21a showed potent antiproliferative activities against the H1975 cells, MCF-7 cells and osimertinib-resistant cells AZDR. Further, 21a showed significant antitumor effects and good safety in ADZR xenograft-bearing mice. Taken together, 21a was a potent dual inhibitor of EGFRL858R/T790M/ACK1, which is deserved as a potential lead for overcoming acquired resistance to osimertinib during the EGFR-targeted therapy.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Indoles , Lung Neoplasms , Pyrimidines , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , ErbB Receptors/metabolism , Drug Resistance, Neoplasm , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Cell Line, Tumor
2.
J Med Chem ; 66(8): 5719-5752, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37042119

ABSTRACT

Epidermal growth factor receptor (EGFR) is one of the most studied drug targets for the treatment of non-small-cell lung cancer (NSCLC). Here, we report the identification, structure optimization, and structure-activity relationship studies of quinazoline derivatives as novel selective EGFR L858R/T790M inhibitors. The most promising compound, 28f, exhibited strong inhibitory activity against EGFR L858R/T790M (IC50 = 3.5 nM) and greater than 368-fold selectivity over EGFR WT (IC50 = 1290 nM), a 6.7-fold improvement over osimertinib. Furthermore, 28f effectively inhibited downstream signaling pathways and induced apoptosis in mutant cells. In the H1975 xenograft in vivo model, 28f exhibited a good tumor suppressive effect. Furthermore, the combination of 28f with the ACK1 inhibitor dasatinib produced synergistic antiproliferative efficacy with 28f in 28f-resistant cells and in vivo. In conclusion,28f could become a candidate drug for the treatment of NSCLC, and the combination of 28f and dasatinib is expected to overcome EGFR resistance.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Cell Proliferation , Dasatinib/pharmacology , Cell Line, Tumor , Mutation , Protein Kinase Inhibitors/pharmacology , Drug Resistance, Neoplasm , Antineoplastic Agents/pharmacology
3.
Int J Pharm ; 626: 122187, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36100145

ABSTRACT

Detoxification of glutathione (GSH) and insufficient cellular uptake of cisplatin (CDDP) severely compromised the therapeutic efficacy of CDDP. Here, a nano-delivery system (BT-4@PtPPNPs) for CDDP prodrug (C16-Pt(Ⅳ)-PEG) based on a novel sulfhydryl blocking reagent methyl 2-(methylsulfonyl) benzothiazole-6-carboxylate (BT-4) was developed. On the one hand, BT-4 can deplete GSH in tumor cells by directly interacting with reactive sulfhydryl group on GSH, thereby increasing the cytotoxicity of CDDP. On the other hand, the CDDP prodrug carrier C16-Pt(IV)-PEG can promote the distribution of CDDP in tumors, reduce the probability of unexpected inactivation of CDDP, and reduce the content of GSH in tumor cells during the conversion to CDDP, thereby making CDDP more effective for treatment. The results showed that the optimized BT-4@PtPPNPs with a small particle size (130 nm) exhibited notable cytotoxicity and apoptosis of 4T1 cells. BT-4@PtPPNPs not only significantly improved the uptake of drugs by tumor cells, but also rapidly targeted and accumulated in the tumors for a long time. Moreover, in vivo efficacy studies showed that BT-4@PtPPNPs could effectively inhibit tumor growth, inhibiting 60.85 % of tumors in a 4T1 breast cancer mice model, showing superior antitumor activity, which can be attributed to GSH-triggered CDDP tolerance reversal. Overall, this study provides an attractive and simple strategy to combine novel sulfhydryl blockers and CDDP prodrugs to potentiate the efficacy of CDDP in breast cancer.


Subject(s)
Antineoplastic Agents , Neoplasms , Prodrugs , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Benzothiazoles , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Glutathione , Mice , Micelles , Neoplasms/drug therapy , Prodrugs/pharmacology , Prodrugs/therapeutic use
4.
J Hematol Oncol ; 15(1): 94, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840984

ABSTRACT

Epidermal growth factor receptor (EGFR), the receptor for members of the epidermal growth factor family, regulates cell proliferation and signal transduction; moreover, EGFR is related to the inhibition of tumor cell proliferation, angiogenesis, invasion, metastasis, and apoptosis. Therefore, EGFR has become an important target for the treatment of cancer, including non-small cell lung cancer, head and neck cancer, breast cancer, glioma, cervical cancer, and bladder cancer. First- to third-generation EGFR inhibitors have shown considerable efficacy and have significantly improved disease prognosis. However, most patients develop drug resistance after treatment. The challenge of overcoming intrinsic and acquired resistance in primary and recurrent cancer mediated by EGFR mutations is thus driving the search for alternative strategies in the design of new therapeutic agents. In view of resistance to third-generation inhibitors, understanding the intricate mechanisms of resistance will offer insight for the development of more advanced targeted therapies. In this review, we discuss the molecular mechanisms of resistance to third-generation EGFR inhibitors and review recent strategies for overcoming resistance, new challenges, and future development directions.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm , ErbB Receptors , Humans , Lung Neoplasms/drug therapy , Mutation , Neoplasm Recurrence, Local/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
5.
Acta Pharm Sin B ; 12(5): 2171-2192, 2022 May.
Article in English | MEDLINE | ID: mdl-35646548

ABSTRACT

The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway is widely activated by a variety of extracellular stimuli, and its dysregulation is associated with the proliferation, invasion, and migration of cancer cells. ERK1/2 is located at the distal end of this pathway and rarely undergoes mutations, making it an attractive target for anticancer drug development. Currently, an increasing number of ERK1/2 inhibitors have been designed and synthesized for antitumor therapy, among which representative compounds have entered clinical trials. When ERK1/2 signal transduction is eliminated, ERK5 may provide a bypass route to rescue proliferation, and weaken the potency of ERK1/2 inhibitors. Therefore, drug research targeting ERK5 or based on the compensatory mechanism of ERK5 for ERK1/2 opens up a new way for oncotherapy. This review provides an overview of the physiological and biological functions of ERKs, focuses on the structure-activity relationships of small molecule inhibitors targeting ERKs, with a view to providing guidance for future drug design and optimization, and discusses the potential therapeutic strategies to overcome drug resistance.

6.
J Med Chem ; 65(5): 3758-3775, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35200035

ABSTRACT

c-Jun N-terminal kinases (JNKs), members of the mitogen-activated protein kinase (MAPK) family, are encoded by three genes: jnk1, jnk2, and jnk3. JNKs are involved in the pathogenesis and development of many diseases, such as neurodegenerative diseases, inflammation, and cancers. Therefore, JNKs have become important therapeutic targets. Many JNK inhibitors have been discovered, and some have been introduced into clinical trials. However, the study of isoform-selective JNK inhibitors is still a challenging task. To further develop novel JNK inhibitors with clinical value, a comprehensive understanding of JNKs and their corresponding inhibitors is required. In this Perspective, we introduced the JNK signaling pathways and reviewed different chemical types of JNK inhibitors, focusing on their structure-activity relationships and biological activities. The challenges and strategies for the development of JNK inhibitors are also discussed. It is hoped that this Perspective will provide valuable references for the development of novel selective JNK inhibitors.


Subject(s)
JNK Mitogen-Activated Protein Kinases , Neoplasms , Humans , MAP Kinase Signaling System , Neoplasms/drug therapy , Phosphorylation , Protein Isoforms/metabolism
7.
J Med Chem ; 64(22): 16328-16348, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34735773

ABSTRACT

Activated Cdc42-associated kinase 1 (ACK1/TNK2) is a nonreceptor tyrosine kinase with a unique structure. It not only can act as an activated transmembrane effector of receptor tyrosine kinases (RTKs) to transmit various RTK signals but also can play a corresponding role in epigenetic regulation. A number of studies have shown that ACK1 is a carcinogenic factor. Blockage of ACK1 has been proven to be able to inhibit cancer cell survival, proliferation, migration, and radiation resistance. Thus, ACK1 is a promising potential antitumor target. To date, despite many efforts to develop ACK1 inhibitors, no specific small molecule inhibitors have entered clinical trials. This Perspective provides an overview of the structural features, biological functions, and association with diseases of ACK1 and in vitro and in vivo activities, selectivity, and therapeutic potential of small molecule ACK1 inhibitors with different chemotypes.


Subject(s)
Antineoplastic Agents/pharmacology , Molecular Targeted Therapy , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Humans , Protein-Tyrosine Kinases/metabolism , Signal Transduction
8.
Acta Pharm Sin B ; 11(10): 3015-3034, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34729301

ABSTRACT

Parkinson's disease (PD), known as one of the most universal neurodegenerative diseases, is a serious threat to the health of the elderly. The current treatment has been demonstrated to relieve symptoms, and the discovery of new small-molecule compounds has been regarded as a promising strategy. Of note, the homeostasis of the autolysosome pathway (ALP) is closely associated with PD, and impaired autophagy may cause the death of neurons and thereby accelerating the progress of PD. Thus, pharmacological targeting autophagy with small-molecule compounds has been drawn a rising attention so far. In this review, we focus on summarizing several autophagy-associated targets, such as AMPK, mTORC1, ULK1, IMPase, LRRK2, beclin-1, TFEB, GCase, ERRα, C-Abelson, and as well as their relevant small-molecule compounds in PD models, which will shed light on a clue on exploiting more potential targeted small-molecule drugs tracking PD treatment in the near future.

9.
Chem Commun (Camb) ; 57(97): 13194-13197, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34816823

ABSTRACT

Autophagy-based protein degradation is emerging as a promising technology for anti-diseases and innovative drug discovery. Here, we demonstrate a novel type of autophagy-targeting chimera (AUTAC) to degrade protein by targeting autophagy key protein LC3. The best compound 10f powerfully degraded BRD4 protein through the autophagy pathway and exhibited good anti-proliferative activity in multiple tumor cells, providing a powerful toolbox for medicinal chemists to study disease-related targets with autophagy-based degradation.


Subject(s)
Autophagy , Microtubule-Associated Proteins/metabolism , Cell Cycle Proteins/metabolism , HeLa Cells , Humans , Molecular Structure , Transcription Factors/metabolism
10.
J Med Chem ; 64(7): 3493-3507, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33764774

ABSTRACT

A series of tools for targeted protein degradation are inspiring scientists to develop new drugs with advantages over traditional small-molecule drugs. Among these tools, proteolysis-targeting chimeras (PROTACs) are most representative of the technology based on proteasomes. However, the proteasome has little degradation effect on certain macromolecular proteins or aggregates, extracellular proteins, and organelles, which limits the application of PROTACs. Additionally, lysosomes play an important role in protein degradation. Therefore, lysosome-induced protein degradation drugs can directly regulate protein levels in vivo, achieve the goal of treating diseases, and provide new strategies for drug discovery. Lysosome-based degradation technology has the potential for clinical translation. In this review, strategies targeting lysosomal pathways and lysosome-based degradation techniques are summarized. In addition, lysosome-based degrading drugs are described, and the advantages and challenges are listed. Our efforts will certainly promote the design, discovery, and clinical application of drugs associated with this technology.


Subject(s)
Drug Discovery/methods , Lysosomes/metabolism , Peptides/pharmacology , Proteolysis/drug effects , Amino Acid Sequence , Animals , Autophagosomes/metabolism , Autophagy/drug effects , Endocytosis/physiology , Humans , Peptides/chemistry , Protein Binding , Receptor, IGF Type 2/metabolism
11.
Chem Commun (Camb) ; 56(84): 12765-12768, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-32966389

ABSTRACT

An organocatalytic multicomponent reaction of N-protected hydroxylamines, acrylaldehyde and acetal-containing enones was developed. Bisacetal-containing bicyclic isoxazolidine derivatives bearing four continuous stereocenters were formed with excellent stereoselectivities. A plausible reaction pathway was proposed based on 18O-labeling control experiments.

12.
Org Lett ; 20(12): 3609-3612, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29863888

ABSTRACT

Structurally complex cyclic hemiacetals bearing a racemic tetrasubstituted stereocenter have been prepared in a concise manner and were successfully used in an organocatalytic enantioselective sequence to react with functionalized nitro-olefins, providing bicyclic acetal-containing compounds as two separable epimers with excellent stereoselectivity. The reaction showed broad substrate scope, with respect to the starting hemiacetals. Moreover, this protocol allows the synthetic transformation of the products to various interesting heterocyclic compounds with substantial structural diversity and broad functionality.

SELECTION OF CITATIONS
SEARCH DETAIL
...