Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antib Ther ; 5(1): 1-10, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35005430

ABSTRACT

BACKGROUND: COBRA™ (COnditional Bispecific Redirected Activation) T-cell engagers are designed to target solid tumors as a single polypeptide chain prodrug that becomes activated by proteolysis in the tumor microenvironment. One COBRA molecule comprises seven Ig domains: three single-domain antibodies (sdAbs) recognizing a tumor target or human serum albumin (HSA), and CD3ε-binding variable fragment heavy chain (VH) and variable fragment light chain (VL) and their inactivated counterparts, VHi and VLi. Pairing of VH and VL, and VLi and VHi into single-chain variable fragments (Fv) is prevented by shortened inter-domain linkers. Instead, VH and VL are expected to interact with VLi and VHi, respectively, thus making a diabody whose binding to CD3ε on the T-cells is impaired. METHODS: We analyzed the structure of an epidermal growth factor receptor (EGFR) COBRA in solution using negative stain electron microscopy (EM) and small-angle X-ray scattering (SAXS). RESULTS: We found that this EGFR COBRA forms stable monomers with a very dynamic interdomain arrangement. At most, only five domains at a time appeared ordered, and only one VH-VL pair was found in the Fv orientation. Nonenzymatic posttranslational modifications suggest that the CDR3 loops in the VL-VHi pair are exposed but are buried in the VH-VLi pair. The MMP9 cleavage rate of the prodrug when bound to recombinant EGFR or HSA is not affected, indicating positioning of the MMP9-cleavable linker away from the EGFR and HSA binding sites. CONCLUSION: Here, we propose a model for EGFR COBRA where VH and VLi form an Fv, and VL and VHi do not, possibly interacting with other Ig domains. SAXS and MMP9 cleavage analyses suggest that all COBRA molecules tested have a similar structural architecture.

2.
MAbs ; 5(4): 608-13, 2013.
Article in English | MEDLINE | ID: mdl-23751615

ABSTRACT

Manufacturing-induced disulfide reduction has recently been reported for monoclonal human immunoglobulin gamma (IgG) antibodies, a widely used modality in the biopharmaceutical industry. This effect has been tied to components of the intracellular thioredoxin reduction system that are released upon cell breakage. Here, we describe the effect of process parameters and intrinsic molecule properties on the extent of reduction. Material taken from cell cultures at the end of production displayed large variations in the extent of antibody reduction between different products, including no reduction, when subjected to the same reduction-promoting harvest conditions. Additionally, in a reconstituted model in which process variables could be isolated from product properties, we found that antibody reduction was dependent on the cell line (clone) and cell culture process. A bench-scale model using a thioredoxin/thioredoxin reductase regeneration system revealed that reduction susceptibility depended on not only antibody class but also light chain type; the model further demonstrates that the trend in reducibility was identical to DTT reduction sensitivity following the order IgG1λ > IgG1κ > IgG2λ > IgG2κ. Thus, both product attributes and process parameters contribute to the extent of antibody reduction during production.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , Disulfides/chemistry , Immunoglobulin G/chemistry , Immunoglobulin G/isolation & purification , Animals , CHO Cells , Cricetinae , Cricetulus , Dithiothreitol/chemistry , Humans , Immunoglobulin kappa-Chains/chemistry , Immunoglobulin kappa-Chains/isolation & purification , Immunoglobulin lambda-Chains/chemistry , Immunoglobulin lambda-Chains/isolation & purification , Oxidation-Reduction , Oxygen/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...