Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Environ Sci Pollut Res Int ; 30(51): 111423-111440, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37816964

ABSTRACT

The ecology and environment of the Yellow River Basin is threatened by fluoride and nitrate contamination induced by anthropogenic activity and geogenic factors. As a result, deciphering the spatio-temporal variability of fluoride and nitrate contamination in this area remains a challenge. Three hundred eighty-six samples of surface water and groundwater from the Inner Mongolia Reaches of the Yellow River Basin were taken for this investigation. According to the results of the multivariate statistical and geostatistical analyses, the fluoride pollution was primarily discovered in the middle and lower reaches of the study area and was determined to be more severe during the dry season. In contrast, nitrate contamination was found to be more severe during the wet season while being widely distributed in groundwater and concentrated in areas with intensive agricultural activities. The primary mechanisms governing the spatial-seasonal patterns of NO3- and F- pollution were shown by the principal component analysis, isotopic, and hydrochemical diagrams. The water-rock interaction or evaporation was crucial in the enrichment of F-. The human inputs (e.g., fertilizer or sewage) dominated fluoride and nitrate contamination. Additionally, the alkaline environment played a role in the generation of NO3- and F-. The health risk assessment concluded that the threat of fluoride contamination was greater than that of nitrate contamination. Children faced the greatest health risks, followed by females and males. These findings would serve as a guide for water management and pollution control in the Yellow River Basin.


Subject(s)
Groundwater , Water Pollutants, Chemical , Child , Humans , Nitrates/analysis , Rivers , Fluorides/analysis , Seasons , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , China , Water/analysis , Groundwater/analysis
2.
Huan Jing Ke Xue ; 44(9): 4863-4873, 2023 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-37699805

ABSTRACT

The Yellow River in Inner Mongolia was selected as the study area in this study. In July (wet season) and October (dry season) of 2021, the acquisition of seasonal rivers, the Yellow River tributaries and precipitation, the Yellow River, Wuliangsuhai, Lake Hasuhai, Lake Daihai, an irrigation canal system, and underground water and sea water samples were collected to test the water chemical composition and hydrogen and oxygen isotopic values of different water types. Using the Piper triplot, Gibbs plot, ion ratio, and MixSIAR model methods, the evolution of water chemistry in the Mongolian section of the Yellow River Basin was analyzed, and the transformation relationship between precipitation, surface water, and groundwater was revealed. The results showed that both groundwater and surface water in the study area were slightly alkaline; the dominant anion in water was Cl-, and the dominant cation was Na+. The main hydrochemical types of surface water were Cl·SO4-Na·Mg and SO4·HCO3-Na·Mg, whereas those of groundwater were Cl·SO4-Na·Mg and SO4·HCO3-Na·Ca. Groundwater Ca2+ and Mg2+ were primarily derived from the dissolution of silicate and evaporite, and surface water Ca2+ and Mg2+ were primarily derived from carbonate karst dissolution and carbonate and sulfuric acid in water participating in the dissolution process of carbonate and sulfide minerals. Na+ and Cl- in different water bodies were all affected by anthropogenic pollution sources. Owing to the seasonal effect, δD and δ18O of surface water and groundwater were higher in the wet season than in the dry season. The results showed that surface water was affected by evaporative fractionation after receiving precipitation recharge, and the groundwater recharge sources were complex. The MixSIAR model revealed that surface water was the main recharge source of groundwater, accounting for 52.4%-62.2% of the total recharge, and atmospheric precipitation was the main recharge source of surface water, accounting for 85.4%-97.1% of the total recharge.

3.
Sci Rep ; 12(1): 6144, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35414678

ABSTRACT

A tightly coupled integrated navigation system (TCINS) for hypersonic vehicles is proposed when the satellite signals are disturbed. Firstly, the architecture of the integrated navigation system for the hypersonic vehicle is introduced. This system applies fiber SINS, BeiDou satellite receiver (BDS) and System On a Parogrammable Chip (SOPC) missile-born computer. Subsequently, the SINS mechanization for hypersonic vehicle is presented. The J2 model is employed for the normal gravity of the near space. An algorithm for updating the attitude, velocity and position is designed. State equations and measurement equations of SINS/BDS tightly coupled integrated navigation for hypersonic vehicle are given, and a scheme of validity for satellite data is designed. Finally, the SINS/BDS tightly coupled vehicle field tests and hardware-in-the-loop (HWIL) simulation tests are carried out. The vehicle field test and HWIL simulation results show that the heading angle error of tightly coupled integrated navigation is within 0.2°, the pitch and roll angle errors are within 0.05°, the maximum velocity error is 0.3 m/s, and the maximum position error is 10 m.

SELECTION OF CITATIONS
SEARCH DETAIL
...