Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 9(10): e2105419, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35106952

ABSTRACT

Deteriorating interfacial contact under mechanical deformation induces large cracks and high charge transfer resistance, resulting in a severe capacity fading of flexible lithium-ion batteries (LIBs). Herein, an oxygen plasma treatment on a polymer separator combined with high-speed centrifugal spraying to construct ultrastable interfacial contacts is reported. With the treatment, abundant hydrophilic oxygen-containing functional groups are produced and ensure strong chemical adhesion between the separator and the active materials. With single walled carbon nanotubes (SWCNTs) sprayed onto the active materials, a dense thin film is formed as the current collector. Meanwhile, the centrifugal force caused by high-speed rotation together with van der Waals forces under fast evaporation produces a much closer interface between the current collector and the active materials. As a result of this ultrastable interfacial interaction, the integrated electrode shows no structural failure after 5000 bending cycles with the charge-transfer resistance as low as 35.8% and a Li-ion diffusion coefficient nearly 19 times of the untreated electrode. Flexible LIBs assembled with these integrated electrodes show excellent structural and electrochemical stability, and can work steadily under various deformed states and repeated bending. This work provides a new technique toward rational design of electrode configuration for flexible LIBs.

2.
Small Methods ; 6(2): e2101030, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35174984

ABSTRACT

Large-area fabrication and stacking of various nanometer-thick functional layers from solutions is essentially important for the construction of flexible thin-film optoelectronic devices, but very challenging. The existing fabrication methods suffer from either non-uniformity caused by the coffee-ring effect or serious solution waste (excess of 90% for spin coating), and are hard to scale up and create stacks. Here, it is shown that centrifugal casting is a universal, scalable, and efficient method to fabricate uniform nanometer-thick films and their stacks of various materials. The coffee-ring effect is effectively suppressed, the solution utilization ratio is higher than ≈61%, and the films/stacks show a smooth surface/high-quality interface. Using this method, flexible quantum dot light-emitting diode displays with uniform luminance in a large lighting area of ≈115 cm2 that have not been achieved even on rigid substrates by the existing methods, are realized. This efficient and low-cost solution processing method paves a way for large-area fabrication of various flexible thin-film optoelectronic devices.

3.
ACS Omega ; 6(50): 34301-34313, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34963916

ABSTRACT

Direct-write additive manufacturing of graphene and carbon nanotube (CNT) patterns by aerosol jet printing (AJP) is promising for the creation of thermal and electrical interconnects in (opto)electronics. In realistic application scenarios, this however often requires deposition of graphene and CNT patterns on rugged substrates such as, for example, roughly machined and surface-oxidized metal block heat sinks. Most AJP of graphene/CNT patterns has thus far however concentrated on flat wafer- or foil-type substrates. Here, we demonstrate AJP of graphene and single walled CNT (SWCNT) patterns on realistically rugged plasma-electrolytic-oxidized (PEO) Al blocks, which are promising heat sink materials. We show that AJP on the rugged substrates offers line resolution of down to ∼40 µm width for single AJP passes, however, at the cost of noncomplete substrate coverage including noncovered µm-sized pores in the PEO Al blocks. With multiple AJP passes, full coverage including coverage of the pores is, however, readily achieved. Comparing archetypical aqueous and organic graphene and SWCNT inks, we show that the choice of the ink system drastically influences the nanocarbon AJP parameter window, deposit microstructure including crystalline quality, compactness of deposit, and inter/intrapass layer adhesion for multiple passes. Simple electrical characterization indicates aqueous graphene inks as the most promising choice for AJP-deposited electrical interconnect applications. Our parameter space screening thereby forms a framework for rational process development for graphene and SWCNT AJP on application-relevant, rugged substrates.

4.
Nanoscale ; 13(4): 2448-2455, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33464264

ABSTRACT

The conventional strategy of fabricating resistive random access memory (RRAM) based on graphene oxide is limited to a resistive layer with homogeneous oxidation, and the switching behavior relies on its redox reaction with an active metal electrode, so the obtained RRAMs are typically plagued by inferior performance and reliability. Here, we report a strategy to develop high-performance flexible RRAMs by using graphene oxidized with a perpendicular oxidation gradient as the resistive layer. In contrast to a homogeneous oxide, this graphene together with its distinctive inter-layer oxygen diffusion path enables excellent oxygen ion/vacancy diffusion. Without an interfacial redox reaction, oxygen ions can diffuse to form conductive filaments with two inert metal electrodes by applying a bias voltage. Compared with state-of-the-art graphene oxide RRAMs, these graphene RRAMs have shown superior performance including a high on-off current ratio of ∼105, long-term retention of ∼106 s, reproducibility over 104 cycles and long-term flexibility at a bending strain of 0.6%, indicating that the material has great potential in wearable smart data-storage devices.

5.
Science ; 370(6516): 596-600, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33122384

ABSTRACT

Proton transport in nanochannels under humid conditions is crucial for the application in energy storage and conversion. However, existing materials, including Nafion, suffer from limited conductivity of up to 0.2 siemens per centimeter. We report a class of membranes assembled with two-dimensional transition-metal phosphorus trichalcogenide nanosheets, in which the transition-metal vacancies enable exceptionally high ion conductivity. A Cd0.85PS3Li0.15H0.15 membrane exhibits a proton conduction dominant conductivity of ~0.95 siemens per centimeter at 90° Celsius and 98% relative humidity. This performance mainly originates from the abundant proton donor centers, easy proton desorption, and excellent hydration of the membranes induced by cadmium vacancies. We also observed superhigh lithium ion conductivity in Cd0.85PS3Li0.3 and Mn0.77PS3Li0.46 membranes.

6.
Adv Mater ; 32(14): e1907411, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32091164

ABSTRACT

Ultrathin, lightweight, high-strength, and thermally conductive electromagnetic interference (EMI) shielding materials with high shielding effectiveness (SE) are highly desired for next-generation portable and wearable electronics. Pristine graphene (PG) has a great potential to meet all the above requirements, but the poor processability of PG nanosheets hinders its applications. Here, efficient synthesis of highly aligned laminated PG films and nacre-like PG/polymer composites with a superhigh PG loading up to 90 wt% by a scanning centrifugal casting method is reported. Due to the PG-nanosheets-alignment-induced high electrical conductivity and multiple internal reflections, such films show superhigh EMI SE comparable to the reported best synthetic material, MXene films, at an ultralow thickness. An EMI SE of 93 dB is obtained for the PG film at a thickness of ≈100 µm, and 63 dB is achieved for the PG/polyimide composite film at a thickness of ≈60 µm. Furthermore, such PG-nanosheets-based films show much higher mechanical strength (up to 145 MPa) and thermal conductivity (up to 190 W m-1 K-1 ) than those of their MXene counterparts. These excellent comprehensive properties, along with ease of mass production, pave the way for practical applications of PG nanosheets in EMI shielding.

7.
ACS Nano ; 13(8): 9482-9490, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31393701

ABSTRACT

The strong quantum confinement effect as well as abundant edges and oxygen functional groups enable nano-graphene oxide (NGO) a variety of intriguing applications such as catalysis, bioimaging, drug delivery and photovoltaic devices. However, the development of NGO is severely hindered because of the difficulty in controlled mass production. Here, we report the efficient synthesis of NGO with a high yield of ∼40 wt % by water electrolytic oxidation of glassy carbon (GC). The NGO shows a high oxidation degree (C/O atomic ratio, ∼1.4) and excellent dispersion stability. Moreover, its size can be easily tuned by the graphitization degree of GC, which enables the controlled synthesis of NGO with average size of 4, 8, and 13 nm and different oxygen functional groups. As metal-free catalysts, the 13 nm sized NGO is found to be beneficial for the oxidative coupling reaction of benzylamine, while the 4 nm sized NGO shows a conversion rate of 88 times higher than 13 nm sized NGO for the oxidation reaction of benzene. In addition, the water electrolytic oxidation mechanism of graphitic materials is systematically studied. It is found that sulfuric acid has a protective effect on the graphite electrode during the water electrolytic oxidation process, and 50 wt % sulfuric acid solution well balances the protection and oxidation processes, leading to the highest oxidation efficiency and production rate.

8.
Nat Commun ; 9(1): 145, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29321501

ABSTRACT

Graphene oxide is highly desired for printing electronics, catalysis, energy storage, separation membranes, biomedicine, and composites. However, the present synthesis methods depend on the reactions of graphite with mixed strong oxidants, which suffer from explosion risk, serious environmental pollution, and long-reaction time up to hundreds of hours. Here, we report a scalable, safe and green method to synthesize graphene oxide with a high yield based on water electrolytic oxidation of graphite. The graphite lattice is fully oxidized within a few seconds in our electrochemical oxidation reaction, and the graphene oxide obtained is similar to those achieved by the present methods. We also discuss the synthesis mechanism and demonstrate continuous and controlled synthesis of graphene oxide and its use for transparent conductive films, strong papers, and ultra-light elastic aerogels.

9.
ACS Nano ; 10(9): 8676-82, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27537348

ABSTRACT

Lithium-sulfur (Li-S) batteries are attracting increasing interest due to their high theoretical specific energy density, low cost, and eco-friendliness. However, most reports of the high gravimetric specific capacity and long cyclic life are not practically reliable because of their low areal specific capacity derived from the low areal sulfur loading and low sulfur content. Here, we fabricated a highly porous graphene with high pore volume of 3.51 cm(3) g(-1) as the sulfur host, enabling a high sulfur content of 80 wt %, and based on this, we further proposed an all-graphene structure for the sulfur cathode with highly conductive graphene as the current collector and partially oxygenated graphene as a polysulfide-adsorption layer. This cathode structural design enables a 5 mg cm(-2) sulfur-loaded cathode showing both high initial gravimetric specific capacity (1500 mAh g(-1)) and areal specific capacity (7.5 mAh cm(-2)), together with excellent cycling stability for 400 cycles, indicating great promise for more reliable lithium-sulfur batteries.

10.
Chem Commun (Camb) ; 51(17): 3667-70, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-25643659

ABSTRACT

A graphene-coated polymer separator was developed for lithium-selenium batteries with pure selenium powder as the active material. The structure is a simple yet effective strategy for improving Li-Se battery's electrochemical performance, yielding long cycle life up to 1000 cycles with high capacity and excellent rate behavior.

11.
Adv Mater ; 27(4): 641-7, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25377991

ABSTRACT

A flexible Li-S battery based on an integrated structure of sulfur and graphene on a separator is developed. The internal graphene current collector offers a continuous conductive pathway, a modified interface with sulfur, and a good barrier to and an effective reservoir for dissolved polysulfides, consequently improving the capacity and cyclic life of the Li-S battery.

12.
Adv Mater ; 26(13): 1958-91, 2014 Apr 02.
Article in English | MEDLINE | ID: mdl-24591083

ABSTRACT

Carbon nanotube (CNT)- and graphene (G)-based transparent conductive films (TCFs) are two promising alternatives for commonly-used indium tin oxide-based TCFs for future flexible optoelectronic devices. This review comprehensively summarizes recent progress in the fabrication, properties, modification, patterning, and integration of CNT- and G-TCFs into optoelectronic devices. Their potential applications and challenges in optoelectronic devices, such as organic photovoltaic cells, organic light emitting diodes and touch panels, are discussed in detail. More importantly, their key characteristics and advantages for use in these devices are compared. Despite many challenges, CNT- and G-TCFs have demonstrated great potential in various optoelectronic devices and have already been used for some products like touch panels of smartphones. This illustrates the significant opportunities for the industrial use of CNTs and graphene, and hence pushes nanoscience and nanotechnology one step towards practical applications.

14.
ACS Nano ; 7(6): 5367-75, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23672616

ABSTRACT

Graphene-sulfur (G-S) hybrid materials with sulfur nanocrystals anchored on interconnected fibrous graphene are obtained by a facile one-pot strategy using a sulfur/carbon disulfide/alcohol mixed solution. The reduction of graphene oxide and the formation/binding of sulfur nanocrystals were integrated. The G-S hybrids exhibit a highly porous network structure constructed by fibrous graphene, many electrically conducting pathways, and easily tunable sulfur content, which can be cut and pressed into pellets to be directly used as lithium-sulfur battery cathodes without using a metal current-collector, binder, and conductive additive. The porous network and sulfur nanocrystals enable rapid ion transport and short Li(+) diffusion distance, the interconnected fibrous graphene provides highly conductive electron transport pathways, and the oxygen-containing (mainly hydroxyl/epoxide) groups show strong binding with polysulfides, preventing their dissolution into the electrolyte based on first-principles calculations. As a result, the G-S hybrids show a high capacity, an excellent high-rate performance, and a long life over 100 cycles. These results demonstrate the great potential of this unique hybrid structure as cathodes for high-performance lithium-sulfur batteries.


Subject(s)
Electric Power Supplies , Graphite/chemistry , Lithium/chemistry , Nanoparticles/chemistry , Sulfur/chemistry , Alcohols/chemistry , Carbon Disulfide/chemistry , Diffusion , Electric Conductivity , Electrodes , Models, Molecular , Molecular Conformation , Oxygen/chemistry
15.
ACS Nano ; 7(5): 4233-41, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23578259

ABSTRACT

Tunable electrical and optical properties of graphene are vital to promote its use as film electrodes in a variety of devices. We developed an etching-free ozone treatment method to continuously tune the electrical resistance and optical transmittance of graphene films by simply varying the time and temperature of graphene exposure to ozone. Initially, ozone exposure dramatically decreases the electrical resistance of graphene films by p-doping, but this is followed by increases in the resistance and optical transmittance as a result of surface oxidation. The rate of resistance increase can be significantly increased by raising the treatment temperature. The ozone-oxidized graphene is not removed but is gradually transformed to graphene oxide (GO). On the basis of such effects of ozone treatment, we demonstrate a well-defined graphene pattern by using ozone photolithography, in which the ozone-treated graphene electrodes are monolithic but separated by insulating GO regions. Such a monolithic graphene pattern shows low optical contrast, a clean and more hydrophilic surface, indicating the promising use of ozone treatment to achieve high-performance graphene-based optoelectronic devices.

16.
Nanoscale ; 3(11): 4571-4, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22006236

ABSTRACT

High quality patterning of single-walled carbon nanotube (SWCNT) transparent conductive films is achieved by a lift-off aluminum interlayer method, which has the advantage of resulting in contamination-free and damage-free SWCNTs. The obtained patterns preserve the electrical properties of the SWCNT films and show promising applications in flexible high frequency electronic and display devices.


Subject(s)
Aluminum/chemistry , Crystallization/methods , Membranes, Artificial , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Elastic Modulus , Electric Conductivity , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Refractometry , Surface Properties
17.
Nat Mater ; 10(6): 424-8, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21478883

ABSTRACT

Integration of individual two-dimensional graphene sheets into macroscopic structures is essential for the application of graphene. A series of graphene-based composites and macroscopic structures have been recently fabricated using chemically derived graphene sheets. However, these composites and structures suffer from poor electrical conductivity because of the low quality and/or high inter-sheet junction contact resistance of the chemically derived graphene sheets. Here we report the direct synthesis of three-dimensional foam-like graphene macrostructures, which we call graphene foams (GFs), by template-directed chemical vapour deposition. A GF consists of an interconnected flexible network of graphene as the fast transport channel of charge carriers for high electrical conductivity. Even with a GF loading as low as ∼0.5 wt%, GF/poly(dimethyl siloxane) composites show a very high electrical conductivity of ∼10 S cm(-1), which is ∼6 orders of magnitude higher than chemically derived graphene-based composites. Using this unique network structure and the outstanding electrical and mechanical properties of GFs, as an example, we demonstrate the great potential of GF/poly(dimethyl siloxane) composites for flexible, foldable and stretchable conductors.

18.
ACS Nano ; 4(9): 5245-52, 2010 Sep 28.
Article in English | MEDLINE | ID: mdl-20815368

ABSTRACT

Large-area sheets are highly desirable for fundamental research and technological applications of graphene. Here we introduce a modified chemical exfoliation technique to prepare large-area graphene oxide (GO) sheets. The maximum area of the GO sheets obtained can reach ∼40000 µm(2). We found that the GO area is strongly correlated with the C-O content of the graphite oxide, which enables the area of the synthesized GO sheets to be controlled. By simply changing oxidation conditions, GO sheets with an average area of ca. 100-300, ca. 1000-3000, and ∼7000 µm(2) were selectively synthesized. For transparent conductive film applications, thin GO films were fabricated by self-assembly on a liquid/air interface and reduced by HI acid. We found that the sheet resistance of the reduced GO (rGO) films decreases with increasing sheet area at the same transmittance because of the decrease in the number of intersheet tunneling barriers. The rGO film made from GO sheets with an average area of ∼7000 µm(2) shows a sheet resistance of 840 Ω/sq at 78% transmittance, which is much lower than that (19.1 kΩ/sq at 79% transmittance) of a rGO film made from small-area GO sheets of ca. 100-300 µm(2), and comparable to that of graphene films grown on Ni by chemical vapor deposition.

19.
Nanotechnology ; 20(23): 235707, 2009 Jun 10.
Article in English | MEDLINE | ID: mdl-19451674

ABSTRACT

A super-flexible single-walled carbon nanotube (SWCNT) transparent conductive film (TCF) was produced based on a combination of electrophoretic deposition (EPD) and hot-pressing transfer. EPD was performed in a diluted SWCNT suspension with high zeta potential prepared by a pre-dispersion-then-dilution procedure using sodium dodecyl sulfate as the surfactant and negative charge supplier. A SWCNT film was deposited on a stainless steel anode surface by direct current electrophoresis and then transferred to a poly(ethylene terephthalate) substrate by hot-pressing to achieve a flexible SWCNT TCF. The SWCNT TCF obtained by this technique can achieve a sheet resistance of 220 Omega/sq with 81% transparency at 550 nm wavelength and a strong adhesion to the substrate. More importantly, no decrease in the conductivity of the SWCNT TCF was detected after 10 000 cycles of repeated bending. The result indicates that the EPD and hot-pressing transfer technique is an effective approach for fabricating a carbon nanotube TCF with excellent flexibility.

20.
ACS Nano ; 3(3): 707-13, 2009 Mar 24.
Article in English | MEDLINE | ID: mdl-19249871

ABSTRACT

We report a simple approach for the direct and nondestructive assembly of multi-sheeted single-walled carbon nanotube book-like macrostructures (buckybooks) with good control of the nanotube diameter, the sheet packing density, and the book thickness during the floating catalytic growth process. The promise of such buckybooks is highlighted by demonstrating their high capacitance and high-efficiency molecular separation by directly using them as a binder-free electrode and as a filter, respectively. Our approach also provides a flexible and reliable way to easily assemble various other types of nanotubes into book-like or even more sophisticated sandwich-like hybrid macrostructures, realizing the shape-engineering of one-dimensional nanostructures to macroscopic well-defined architectures for various applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...