Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 267(Pt 2): 131505, 2024 May.
Article in English | MEDLINE | ID: mdl-38631574

ABSTRACT

Cellulose, hemicellulose, and lignin are the major bio-components in lignocellulosic biomass (BC-LB), which possess excellent biomechanical properties and biocompatibility to satisfy the demands of orthopedic applications. To understand the basis and trends in the development of major bio-components in BC-LB in orthopedics, the bibliometric technology was applied to get unique insights based on the published papers (741) in the Web of Science (WOS) database from January 1st, 2001, to February 14th, 2023. The analysis includes the annual distributions of publications, keywords co-linearity, research hotspots exploration, author collaboration networks, published journals, and clustering of co-cited literature. The results reveal a steady growth in publications focusing on the application of BC-LB in orthopedics, with China and the United States leading in research output. The "International Journal of Biological Macromolecules" was identified as the most cited journal for BC-LB research in orthopedics. The research hotspots encompassed bone tissue engineering, cartilage tissue engineering, and drug delivery systems, indicating the fundamental research and potential development in these areas. This study also highlights the challenges associated with the clinical application of BC-LB in orthopedics and provides valuable insights for future advancements in the field.


Subject(s)
Bibliometrics , Biomass , Cellulose , Lignin , Orthopedics , Polysaccharides , Lignin/chemistry , Polysaccharides/chemistry , Cellulose/chemistry , Humans , Tissue Engineering/methods
2.
Front Biosci (Landmark Ed) ; 29(2): 68, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38420801

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a complex respiratory disorder influenced by various factors and involving multiple genes. Respiratory dysfunction in COPD patients leads to hypoxia, resulting in limited oxygen uptake. Peroxisome proliferator-activated receptor alpha (PPARA) is a plateau-adapted gene that regulates respiratory function in populations adapted to high-altitude areas through multiple pathways. Interestingly, PPARA expression is higher in long-term inhabiting Tibetan populations that have adapted to the plateau environment. However, in patients with COPD, the expression of PPARA is downregulated, leading to dysregulation of the hypoxia-inducible factor pathway. Moreover, abnormal PPARA expression in lung epithelial cells triggers inflammatory responses, oxidative stress, and disrupted lipid metabolism, thereby exacerbating disease progression. Thus, this paper explored the mechanism underlying the role of plateau-adapted PPARA in COPD, providing essential theoretical insights into the treatment and prevention of COPD in high-altitude regions.


Subject(s)
PPAR alpha , Pulmonary Disease, Chronic Obstructive , Humans , PPAR alpha/genetics , PPAR alpha/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Lung/metabolism , Oxidative Stress
3.
Article in English | MEDLINE | ID: mdl-38410140

ABSTRACT

Background: Chronic obstructive pulmonary disease (COPD) is a chronic respiratory ailment influenced by a blend of genetic and environmental factors. Inflammatory response and an imbalance in oxidative-antioxidant mechanisms constitute the primary pathogenesis of COPD. Glutathione S-transferase P1(GSTP1) plays a pivotal role as an antioxidant enzyme in regulating oxidative-antioxidant responses in the pulmonary system. The activation of the NOD-like receptor thermal protein domain (NLRP3) inflammatory vesicle can trigger an inflammatory response. Several investigations have implicated GSTP1 and NLRP3 in the progression of COPD; nonetheless, there remains debate regarding this mechanism. Methods: Employing a case-control study design, 312 individuals diagnosed with COPD and 314 healthy controls were recruited from Gansu Province to evaluate the correlation between GSTP1 (rs4147581C>G and rs1695A>G) and NLRP3 (rs3806265T>C and rs10754558G>C) polymorphisms and the susceptibility to COPD. Results: The presence of the GSTP1 rs4147581G allele substantially elevated the susceptibility to COPD (CGvs.CC:OR=3.11,95% CI=1.961-4.935, P<0.001;GGvs.CC:OR=2.065,95% CI=1.273-3.350, P=0.003; CG+GGvs.CC:OR=2.594,95% CI=1.718-3.916, P<0.001). Similarly, the NLRP3rs3806265T allele significantly increased the susceptibility to COPD (TC:TT:OR=0.432,95% CI=0.296-0.630; TC+CCvs.TT:OR=2.132,95% CI=1.479-3.074, P<0.001). However, no statistically significant association was discerned between the rs1695A>G and rs10754558G>C polymorphisms and COPD susceptibility (P>0.05). Conclusion: In summary, this study ascertained that the GSTP1 rs4147581C>G polymorphism is associated with increased COPD susceptibility, with the G allele elevating the risk of COPD. Similarly, the NLRP3 rs3806265T>C polymorphism is linked to elevated COPD susceptibility, with the T allele heightening the risk of COPD.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Humans , Antioxidants , Case-Control Studies , Genetic Predisposition to Disease , Genotype , Glutathione S-Transferase pi/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics , Risk Factors
4.
Sensors (Basel) ; 23(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37571758

ABSTRACT

To ensure the accuracy and stability of intelligent-vehicle-trajectory tracking, a robust trajectory-tracking control strategy based on generalized Hamilton theory is proposed. Firstly, a dynamic Hamilton dissipative controller (DHDC) and trajectory-tracking Hamilton dissipative controller (TTHDC) were designed based on the established vehicle-dynamics control system and trajectory-tracking control system using the orthogonal decomposition method and control-switching method. Next, the feedback-dissipative Hamilton realizations of the two systems were obtained separately to ensure the convergence of the system. Secondly, based on the dissipative Hamilton system designed by TTHDC, a generalized Hamilton robust controller (GHRC) was designed. Finally, the co-simulation of Carsim and MATLAB/Simulink was used to verify the effectiveness of the three control algorithms. The simulation results show that DHDC and TTHDC can achieve self-stabilizing control of vehicles and enable certain control effects for the trajectory tracking of vehicles. The GHRC solves the problems of low tracking accuracy and poor stability of DHDC and TTHDC. Compared with the sliding mode controller (SMC) and linear quadratic regulator (LQR) controller, the GHRC can reduce the lateral error by 84.44% and the root mean square error (RMSE) by 83.92%, which effectively improves the accuracy and robustness of vehicle-trajectory tracking.

5.
Carbohydr Polym ; 300: 120252, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36372483

ABSTRACT

Bacterial cellulose (BC) is a significant polysaccharide that bacteria create under specific growth conditions that exhibits high purity, high water-holding capacity, high crystallinity, strong mechanical capabilities, and high biocompatibility. Pure BC has been studied, marketed, and frequently combined with other materials to provide additional potential effects. Additionally, because of the abundance of hydroxyl groups in BC, it can be readily changed to yield derivatives or composites with improved physicochemical and functional characteristics for a variety of applications such as artificial blood vessel manufacturing, soft tissue engineering, and bone tissue engineering. In this review, state-of-the-art manufacturing, structural traits, and applications of BC are summarized, along with in situ and ex situ modification techniques and their biomedical applications. Finally, the future growth opportunities and obstacles for BC and its composites in the biological sector are anticipated.


Subject(s)
Cellulose , Tissue Engineering , Cellulose/chemistry , Bacteria/chemistry , Biocompatible Materials/chemistry
6.
Front Nutr ; 9: 1000517, 2022.
Article in English | MEDLINE | ID: mdl-36276830

ABSTRACT

Prebiotics and probiotics play a positive role in promoting human nutrition and health. Prebiotics are compounds that cannot be digested by the host, but can be used and fermented by probiotics, so as to promote the reproduction and metabolism of intestinal probiotics for the health of body. It has been confirmed that probiotics have clinical or health care functions in preventing or controlling intestinal, respiratory, and urogenital infections, allergic reaction, inflammatory bowel disease, irritable bowel syndrome and other aspects. However, there are few systematic summaries of these types, mechanisms of action and the promotion relationship between prebiotics and probiotic. Therefore, we summarized the various types of prebiotics and probiotics, their individual action mechanisms, and the mechanism of prebiotics promoting probiotics in the intestinal tract. It is hoped this review can provide new ideas for the application of prebiotics and probiotics in the future.

7.
Int J Biol Macromol ; 222(Pt A): 994-1006, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36191783

ABSTRACT

Lignin is a major phenolic polymer from the plant biomass. Due to its abundant functional groups (carboxyl and hydroxyl groups), lignin could act as an antioxidant, antimicrobial as well as an immune modulator. These remarkable biological properties render lignin a highly potential bioactive candidate in the biomedical applications including tissue engineering. Although several effective applications of lignin-based composites have been reported in tissues repairing and organ regeneration, a systematic review to summarize the recent utilization of lignin-based composites in different tissue engineering fields is still lacking. Hence, the aim of this review is to delineate the biological functions of lignin and to highlight the latest applications of lignin-based composites in different tissue engineering fields, such as bone regeneration, organ regeneration and wound dressing. This review will serve as an illuminating resource to direct and promote the biomedical applications of lignin and lignin-based composites.


Subject(s)
Lignin , Tissue Engineering , Bone Regeneration , Polymers , Biomass
8.
Front Nutr ; 9: 996811, 2022.
Article in English | MEDLINE | ID: mdl-36091224

ABSTRACT

Xylo-oligosaccharide (XOS) is a class of functional oligosaccharides that have been demonstrated with prebiotic activity over several decades. XOS has several advantages relative to other oligosaccharide molecules, such as promoting root development as a plant regulator, a sugar supplement for people, and prebiotics to promote intestinal motility utilization health. Now, the preparation and extraction process of XOS is gradually mature, which can maximize the extraction and avoid waste. To fully understand the recent preparation and application of XOS in different areas, we summarized the various technologies for obtaining XOS (including acid hydrolysis, enzymatic hydrolysis, hydrothermal pretreatment, and alkaline extraction) and current applications of XOS, including in animal feed, human food additives, and medicine. It is hoped that this review will serve as an entry point for those looking into the prebiotic field of research, and perhaps begin to dedicate their work toward this exciting classification of bio-based molecules.

9.
Int J Biol Macromol ; 218: 690-705, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35872311

ABSTRACT

Lignin-carbohydrate complexes (LCCs) represent a group of macromolecules with diverse biological functions such as antioxidative properties. Polyglutamine (polyQ) diseases such as spinocerebellar ataxia type 3 (SCA3) comprise a set of neurodegenerative disorders characterized by the formation of polyQ protein aggregates in patient neurons. LCCs have been reported to prevent such protein aggregation. In this study, we identified a potential mechanism underlying the above anti-protein aggregation activity. We isolated and characterized multiple LCC fractions from bamboo and poplar and found that lignin-rich LCCs (BM-LCC-AcOH and PR-LCC-AcOH) effectively eliminated both monomeric and aggregated mutant ataxin-3 (ATXN3polyQ) proteins in neuronal cells and a Drosophila melanogaster SCA3 disease model. In addition, treatment with BM-LCC-AcOH or PR-LCC-AcOH rescued photoreceptor degeneration in vivo. At the mechanistic level, we demonstrated that BM-LCC-AcOH and PR-LCC-AcOH upregulated proteasomal activity. When proteasomal function was impaired, the ability of the LCCs to suppress ATXN3polyQ aggregation was abolished. Thus, we identified a previously undescribed proteasome-inducing function of LCCs and showed that such activity is indispensable for the beneficial effects of LCCs on SCA3 neurotoxicity.


Subject(s)
Machado-Joseph Disease , Animals , Ataxin-3/genetics , Ataxin-3/metabolism , Carbohydrates , Drosophila melanogaster/metabolism , Lignin , Machado-Joseph Disease/genetics , Machado-Joseph Disease/metabolism , Proteasome Endopeptidase Complex
10.
Int J Biol Macromol ; 212: 547-560, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35643155

ABSTRACT

Lignin, the most abundant natural and sustainable phenolic compound in biomass, has exhibited medicinal values due to its biological activities decided by physicochemical properties. Recently, the lignin and its derivatives (such as lignosulfonates and lignosulfonate) have been proven efficient in regulating cellular process and the extracellular microenvironment, which has been regarded as the key factor in disease progression. In orthopaedic diseases, especially the degenerative diseases represented by osteoarthritis and osteoporosis, excessive activated inflammation has been proven as a key stage in the pathological process. Due to the excellent biocompatibility, antibacterial and antioxidative activities of lignin and its derivatives, they have been applied to stimulate cells and restore the uncoupling bone remodeling in the degenerative orthopaedic diseases. However, there is a lack of a systemic review to state the current research actuality of lignin and lignin-derived compounds in treating degenerative orthopaedic diseases. Herein, we summarized the current application of lignin and lignin-derived compounds in orthopaedic diseases and proposed their possible therapeutic mechanism in treating degenerative orthopaedic diseases. It is hoped this work could guide the future preparation of lignin/lignin-derived drugs and implants as available therapeutic strategies for clinically degenerative orthopaedic diseases.


Subject(s)
Lignin , Orthopedics , Biomass , Lignin/pharmacology , Lignin/therapeutic use , Phenols
11.
Carbohydr Polym ; 270: 118342, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34364595

ABSTRACT

The naturally tight entanglement of fibers in bacterial cellulose (BC) results in low printability when BC is used as a bioink for printing scaffolds. In this study, neat BC was treated by TEMPO-mediated oxidation (TO-BC) and maleic acid (MA-BC) to prepare homogeneous BC dispersions to fabricate scaffolds for bone regeneration. Results showed that the treatments released individual fibrils in the corresponding uniform dispersions without impairing inherent crystalline properties. Compared with TO-BC, MA-BC hybridized with gelatin could endow the gel with improved rheological properties and compression modulus for 3D printing. Both TO-BC and MA-BC dispersions showed good osteoblast viability. However, MA-BC possessed more pronounced ability to express osteogenic marker genes and formation of mineralized nodules in vitro. Compared with TO-BC-based gelatin scaffolds, MA-BC-based gelatin scaffolds showed a better ability to stimulate the regeneration of rat calvaria, demonstrating a higher bone mineral density of newly formed bone and trabecular thickness in vivo.


Subject(s)
Bone Regeneration , Cellulose/chemistry , Gelatin/chemistry , Polysaccharides, Bacterial/chemistry , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Animals , Cyclic N-Oxides/chemistry , Hydrogels/chemistry , Hydrolysis , Maleates/chemistry , Mice , Nanofibers/chemistry , Osteoblasts/metabolism , Osteogenesis , Oxidation-Reduction , Rats , Skull/metabolism , Tissue Engineering/methods
12.
Int J Biol Macromol ; 190: 291-300, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34461157

ABSTRACT

Due to the antioxidant properties of lignin, it has been demonstrated as an active substance for treating oxidation-related and inflammatory diseases. However, how the structural properties of lignin affect its biological activities is still ambiguous. In this study, Kraft lignin from wheat straw (KL-A) was used as the raw material to fractionate into three fractions (e.g., KL-B, KL-C, and KL-D) with different molecular weight by ultrafiltration, which possessed different physicochemical properties. The biocompatibility, in vivo and in vitro scavenging abilities for reactive oxygen species (ROS), and anti-apoptotic abilities of the lignin fractions were evaluated using SW1353 chondrocyte cell lines and were quantitatively fitted to their physicochemical properties. The results showed that lignin fractions with lower molecular weights, lower G/S ratios, and higher non-condensed phenolic OH contents endowed lignin with stronger ROS scavenging ability in vivo and in vitro, but was accompanied by increased cytotoxicity to cells. The half maximal inhibitory concentration (IC50) of KL-A, KL-B, KL-C, and KL-D were separately determined as 44.02, 33.43, 32.41, and 18.40 µg/mL. Furthermore, KL-D, with the lowest molecular weight and highest number of functional groups, showed the best antioxidant ability, while it performed poorly in inhibiting cellular apoptosis of chondrocytes. Compared to KL-D, KL-C with inverse structural properties, performed better in anti-apoptosis of SW1353 cells, which is the optimum lignin as promising active substances to be applied in the treatment of osteoarthritis in biomedical engineering.


Subject(s)
Lignin/chemistry , Lignin/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Biphenyl Compounds/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Cell Line , Cell Survival/drug effects , Chemical Fractionation , Chondrocytes/cytology , Chondrocytes/drug effects , Humans , Hydrogen Peroxide/toxicity , Interleukin-1beta/pharmacology , Models, Biological , Molecular Weight , Picrates/chemistry , Regression Analysis , Superoxides/metabolism
13.
Front Bioeng Biotechnol ; 8: 573991, 2020.
Article in English | MEDLINE | ID: mdl-33102457

ABSTRACT

Lignin-carbohydrate complex (LCC) is the biological macromolecule that has been demonstrated to exert multiple biological functions, including antioxidant, anti-inflammation and anti-tumorigenesis, which support its broad application in the bioengineering field. However, it remains elusive the involvements of LCC in human neurological disorders, especially those with the overproduction of reactive oxygen species (ROS), such as spinocerebellar ataxias (SCAs). In this study, we found a previously undetermined anti-protein aggregation activity of LCC. Initially, two individual LCC preparations and carbohydrate-free lignin were isolated from the water-extracted waste residues of Chionanthus retusus (C. retusus) tender leaves. The chemical compositional analysis revealed that lignin (61.5%) is the predominant constituent in the lignin-rich LCC (LCC-L-CR), whereas the carbohydrate-rich LCC (LCC-C-CR) is mainly composed of carbohydrate (60.9%) with the xylan as the major constituent (42.1%). The NMR structural characterization showed that LCC-L-CR preparation is enriched in benzyl ether linkage, while phenyl glycoside is the predominant type of linkage in LCC-C-CR. Both LCC and lignin preparations showed antioxidant activities as exemplified by their abilities to scavenge free radicals in cultured mammalian cells and ROS in zebrafish. We further demonstrated a pronounced capability of LCC-L-CR in inhibiting the aggregation of expanded Ataxin-3, disease protein of SCA type 3, in human neuronal cells. Taken together, our study highlights the antioxidant and novel anti-protein aggregation activities of the C. retusus tender leaves-derived LCC.

14.
Metab Brain Dis ; 35(8): 1433, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32926290

ABSTRACT

The original article contains mistake. The authors want to add Wenhui Pei as first co-author and Fang Fang as co-corresponding author.

15.
Int J Biol Macromol ; 149: 572-580, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32006581

ABSTRACT

Spent coffee grounds (SCG) are a promising raw material for galactomannan (GalM) production based upon its enrichment in galactomannan polysaccharides. In this work, SCG was pretreated by autohydrolysis for maximumly improving GalM extractability by endo-mannanase. The GalM in the prehydolyzate (GalM-PH) and enzymatic hydrolyzate (GalM-EH) were obtained by ethanol precipitation and characterized. Under the optimized autohydrolysis conditions, 50.1% of GalM in pretreated SCG was converted into free GalM in enzymatic hydrolyzate. Compositional analysis results revealed that GalM-PH was comprised of 81.7% galactomannan, higher than that of GalM-EH (76.4%). The molecular weight of GalM-PH and GalM-EH were 44.5 kDa and 28.0 kDa, respectively. Antioxidant assays indicated that both GalM-EH and GalM-PH could scavenge 2,2-diphenyl-1-picryl-hydrazyl radicals and hydroxyl radicals. Immunological and prebiotics analysis showed all GalM preparations exhibited pronounced activities for proliferating the probiotics and proliferating the Macrophages cell for NO production, in which the GalM-EH outperformed the GalM-PH. These results imply that the GalM extracted from SCG are the bioactive substances that can be used as antioxidant, prebiotics, and immunostimulants.


Subject(s)
Antioxidants/chemistry , Coffee/chemistry , Mannans/chemistry , Polysaccharides/chemistry , Antioxidants/isolation & purification , Cellulase/chemistry , Ethanol/chemistry , Galactose/analogs & derivatives , Humans , Hydrolysis , Mannans/isolation & purification , Polysaccharides/isolation & purification , Waste Products , beta-Mannosidase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...