Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Huan Jing Ke Xue ; 44(4): 1890-1898, 2023 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-37040940

ABSTRACT

To study the emission characteristics of carbonaceous aerosol in particulate matter emitted from vehicle exhaust and main civil combustion fuels, organic carbon (OC) and elemental carbon (EC) in PM10 and PM2.5 samples from vehicle sources (gasoline vehicles, light duty diesel vehicles, and heavy duty diesel vehicles), civil coal (chunk coal and briquette coal), and biomass fuels (wheat straw, wood plank, and grape branches) were collected and analyzed by using a multifunctional portable dilution channel sampler and the Model 5L-NDIR OC/EC analyzer. The results showed that there were significant differences in the proportion of carbonaceous aerosols in PM10 and PM2.5from different emission sources. The proportions of total carbon (TC) in PM10 and PM2.5 of different emission sources were 40.8%-68.5% and 30.5%-70.9%, respectively, and the OC/EC were 1.49-31.56 and 1.90-87.57, respectively. The carbon components produced by different emission sources were dominated by OC, and the OC/TC values in PM10 and PM2.5 were 56.3%-97.0% and 65.0%-98.7%, respectively. The proportions of OC in carbonaceous aerosols in PM10and PM2.5 were in the descending order of:briquette coal>chunk coal>gasoline vehicle>wood plank>wheat straw>light duty diesel vehicle>heavy duty diesel vehicle and briquette coal>gasoline car>grape branches>chunk coal>light duty diesel vehicle>heavy duty diesel vehicle, respectively. The main components of carbonaceous aerosols in PM10 and PM2.5 emitted from the various emission sources were different, and source apportionment of carbonaceous aerosols could be accurately distinguished by their ingredient composition profiles.

2.
Front Robot AI ; 10: 1078253, 2023.
Article in English | MEDLINE | ID: mdl-36824984

ABSTRACT

Recent investigations of the electric braking booster (E-Booster) focus on its potential to enhance brake energy regeneration. A vehicle's hydraulic system is composed of the E-Booster and electric stability control to control the master cylinder and wheel cylinders. This paper aims to address the independent closed-loop control of the position and pressure as well as the maintenance of the pedal feel. To track both the reference signals related to piston displacement and the wheel cylinder pressure, an explicit model predictive control (MPC) is developed. First, the new flow model is introduced as the foundation for controller design and simulation. Next, in accordance with the operational conditions, the entire system is divided into three switchable subsystems. The three distributed MPCs are constructed based on the linearized subsystems, and a state machine is used to perform the state jump across the controllers. A linear piecewise affine control law can then be obtained by solving the quadratic program (QP) of explicit MPC. Afterwards, the non-linear extended Kalman filter including the recorded time-variant process noise is used to estimate all the state variables. The effectiveness of the explicit MPC is evidenced by the simulations compared with a single MPC in regenerative and dead-zone conditions. The proposed controller decreases the latency significantly by 85 milliseconds, which also helps to improve accuracy by 22.6%. Furthermore, the pedal feel remains consistent, even when factoring in the number of vibrations caused by the inherent hydraulic characteristic of pressure versus volume.

3.
ACS Appl Bio Mater ; 1(4): 1206-1214, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-34996161

ABSTRACT

In this paper, a DNA hydrogel with low DNA concentration, short sticky end, and good mechanical strength was simply prepared via one-pot self-assembly from two kinds of DNA building block (X- and L-shaped DNA units) chaperoned by a cationic comb-type copolymer (CCC). The gelling process was completed under physiological conditions within 1 min, and the reversible sol-gel phase transition was achieved at room temperature through the continuous addition of CCC and an anionic polymer poly(sodium vinylsulfonate). Moreover, aptamer was successfully patterned into the hydrogel system via click chemistry. Upon the addition of complementary sequences (CSs) of aptamer, the aptamer was hybridized with CSs, leading to the fast dissociation of protein from aptamer with an adjustable release rate in specific regions at prospective times. The hydrogel with excellent cytocompatibility was successfully applied to human serum, a complex matrix. The aptamer-patterned DNA hydrogel is a potential candidate for controlled protein delivery.

SELECTION OF CITATIONS
SEARCH DETAIL
...