Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 961
Filter
1.
World J Stem Cells ; 16(6): 690-707, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38948095

ABSTRACT

BACKGROUND: The treatment of acute respiratory distress syndrome (ARDS) complicated by sepsis syndrome (SS) remains challenging. AIM: To investigate whether combined adipose-derived mesenchymal-stem-cells (ADMSCs)-derived exosome (EXAD) and exogenous mitochondria (mitoEx) protect the lung from ARDS complicated by SS. METHODS: In vitro study, including L2 cells treated with lipopolysaccharide (LPS) and in vivo study including male-adult-SD rats categorized into groups 1 (sham-operated-control), 2 (ARDS-SS), 3 (ARDS-SS + EXAD), 4 (ARDS-SS + mitoEx), and 5 (ARDS-SS + EXAD + mitoEx), were included in the present study. RESULTS: In vitro study showed an abundance of mitoEx found in recipient-L2 cells, resulting in significantly higher mitochondrial-cytochrome-C, adenosine triphosphate and relative mitochondrial DNA levels (P < 0.001). The protein levels of inflammation [interleukin (IL)-1ß/tumor necrosis factor (TNF)-α/nuclear factor-κB/toll-like receptor (TLR)-4/matrix-metalloproteinase (MMP)-9/oxidative-stress (NOX-1/NOX-2)/apoptosis (cleaved-caspase3/cleaved-poly (ADP-ribose) polymerase)] were significantly attenuated in lipopolysaccharide (LPS)-treated L2 cells with EXAD treatment than without EXAD treatment, whereas the protein expressions of cellular junctions [occluding/ß-catenin/zonula occludens (ZO)-1/E-cadherin] exhibited an opposite pattern of inflammation (all P < 0.001). Animals were euthanized by 72 h post-48 h-ARDS induction, and lung tissues were harvested. By 72 h, flow cytometric analysis of bronchoalveolar lavage fluid demonstrated that the levels of inflammatory cells (Ly6G+/CD14+/CD68+/CD11b/c+/myeloperoxidase+) and albumin were lowest in group 1, highest in group 2, and significantly higher in groups 3 and 4 than in group 5 (all P < 0.0001), whereas arterial oxygen-saturation (SaO2%) displayed an opposite pattern of albumin among the groups. Histopathological findings of lung injury/fibrosis area and inflammatory/DNA-damaged markers (CD68+/γ-H2AX) displayed an identical pattern of SaO2% among the groups (all P < 0.0001). The protein expressions of inflammatory (TLR-4/MMP-9/IL-1ß/TNF-α)/oxidative stress (NOX-1/NOX-2/p22phox/oxidized protein)/mitochondrial-damaged (cytosolic-cytochrome-C/dynamin-related protein 1)/autophagic (beclin-1/Atg-5/ratio of LC3B-II/LC3B-I) biomarkers exhibited a similar manner, whereas antioxidants [nuclear respiratory factor (Nrf)-1/Nrf-2]/cellular junctions (ZO-1/E-cadherin)/mitochondrial electron transport chain (complex I-V) exhibited an opposite manner of albumin among the groups (all P < 0.0001). CONCLUSION: Combined EXAD-mitoEx therapy was better than merely one for protecting the lung against ARDS-SS induced injury.

2.
Perioper Med (Lond) ; 13(1): 57, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879506

ABSTRACT

BACKGROUND: Intraoperative hypotension is a common side effect of general anesthesia. Here we examined whether the Hypotension Prediction Index (HPI), a novel warning system, reduces the severity and duration of intraoperative hypotension during general anesthesia. METHODS: This randomized controlled trial was conducted in a tertiary referral hospital. We enrolled patients undergoing general anesthesia with invasive arterial monitoring. Patients were randomized 1:1 either to receive hemodynamic management with HPI guidance (intervention) or standard of care (control) treatment. Intraoperative hypotension treatment was initiated at HPI > 85 (intervention) or mean arterial pressure (MAP) < 65 mmHg (control). The primary outcome was hypotension severity, defined as a time-weighted average (TWA) MAP < 65 mmHg. Secondary outcomes were TWA MAP < 60 and < 55 mmHg. RESULTS: Of the 60 patients who completed the study, 30 were in the intervention group and 30 in the control group. The patients' median age was 62 years, and 48 of them were male. The median duration of surgery was 490 min. The median MAP before surgery presented no significant difference between the two groups. The intervention group showed significantly lower median TWA MAP < 65 mmHg than the control group (0.02 [0.003, 0.08] vs. 0.37 [0.20, 0.58], P < 0.001). Findings were similar for TWA MAP < 60 mmHg and < 55 mmHg. The median MAP during surgery was significantly higher in the intervention group than that in the control group (87.54 mmHg vs. 77.92 mmHg, P < 0.001). CONCLUSIONS: HPI guidance appears to be effective in preventing intraoperative hypotension during general anesthesia. Further investigation is needed to assess the impact of HPI on patient outcomes. TRIAL REGISTRATION: ClinicalTrials.gov (NCT04966364); 202105065RINA; Date of registration: July 19, 2021; The recruitment date of the first patient: July 22, 2021.

3.
Clin Chim Acta ; 561: 119814, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38879063

ABSTRACT

BACKGROUND: Hepatocellular cancer (HCC) is one of the most harmful tumors to human health. Currently, there is still a lack of highly sensitive and specific HCC biomarkers in clinical practice. In this study, we aimed to explore the diagnostic performance of prostaglandin A2 (PGA2) for the early detection of HCC. METHODS: Untargeted metabolomic analyses on normal control (NC) and HCC participants in the discovery cohort were performed, and PGA2 was identified to be dysregulated in HCC. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for detecting serum PGA2 was established and applied to validate the dysregulation of PGA2 in another independent validation cohort. Receiver operating characteristic (ROC), decision curve analysis (DCA) and some other statistical analyses were performed to evaluate the diagnostic performance of PGA2 for HCC. RESULTS: At first, PGA2 was found to be dysregulated in HCC in untargeted metabolomic analyses. Then a precise quantitative LC-MS/MS method for PGA2 has been established and has passed rigorous method validation. Targeted PGA2 analyses confirmed that serum PGA2 was decreased in HCC compared to normal-risk NC and high-risk cirrhosis group. Subsequently, PGA2 was identified as a novel biomarker for the diagnosis of HCC, with an area under the ROC curve (AUC) of 0.911 for differentiating HCC from the combined NC + cirrhosis groups. In addition, PGA2 exhibited high performance for differentiating small-size (AUC = 0.924), early-stage (AUC = 0.917) and AFP (-) HCC (AUC = 0.909) from the control groups. The combination of PGA2 and AFP might be useful in the surveillance of risk population for HCC and early diagnosis of HCC. CONCLUSION: This study establishes that PGA2 might be a novel diagnostic biomarker for HCC.

4.
Nurs Crit Care ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866584

ABSTRACT

BACKGROUND: Healthcare's carbon footprint contributes to 4.4% of global net emissions and intensive care units (ICUs) are very resource intensive. Existing studies on environmental sustainability in ICUs focused on carbon footprint generated from energy and electricity consumption, use of medical consumables and equipment, but few studies quantified carbon footprint generated from pharmaceuticals used in ICUs. AIM: To evaluate carbon footprint arising from sedation practices in the ICUs. STUDY DESIGN: A pilot, prospective observational study was conducted in two ICUs from 1 August to 22 September 2022 in Singapore General Hospital. Adult patients who were consecutively sedated, intubated and expected to be mechanically ventilated for at least 24 h were included. Total amount of analgesia and sedatives used and wasted in eligible patients were collected. Carbon emission from ICU sedation practices were then quantified using available life cycle assessment data. RESULTS: A total of 31 patients were recruited. Top analgesia and sedative used in both ICUs were fentanyl and propofol, respectively. Carbon footprint from sedative usage and wastage across 7 weeks in both ICUs were 2.206 kg CO2-e and 0.286 g CO2-e, respectively. In total, this equates to driving 15.8 km by car. Proportion of drug wasted ranged from 5.1% to 25.0%, with the top reason for wastage being the drug was no longer clinically indicated. Recommendations to reduce carbon footprint include choosing sedatives with lower carbon emissions where possible and having effective communication among doctors and nurses regarding management plans to minimize unnecessary wastage. CONCLUSION: Our study quantified carbon footprint arising from sedation practices, mainly drug usage and wastage in two ICUs in Singpore General Hospital. RELEVANCE TO CLINICAL PRACTICE: Adopting a holistic approach to environmental sustainability in the ICU, sedation practices also contribute to generating greenhouse gases, albeit small, and can be targeted to reduce unnecessary carbon footprint.

5.
J Clin Sleep Med ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895993

ABSTRACT

STUDY OBJECTIVES: This study assessed the current state of sleep medicine accreditation and training in Asia by conducting a comprehensive survey across 29 Asian countries and regions facilitated by the Asian Society of Sleep Medicine (ASSM) to identify existing gaps and provide recommendations for future enhancements. METHODS: The ASSM Education Task Force Committee designed a survey to gather data on accreditation, education, and training standards in sleep medicine, including information on challenges in enhancing education in the field. RESULTS: With an 86% (25 countries/regions) response rate, the survey showed that sleep medicine is recognized as an independent specialty in just nine countries/regions (36% of the countries/regions surveyed). Ten countries/regions have established sleep medicine training programs, with Japan and Saudi Arabia offering it as a distinct specialty. Significant disparities in training and accreditation standards were identified, with many countries/regions lacking formalized training and practice guidelines. The survey also revealed that most local sleep societies across Asia support the development of an Asian Sleep Medicine Training Curriculum led by the ASSM. However, several barriers significantly impede the establishment and development of sleep medicine training programs, including the scarcity of trained specialists and technologists and the absence of national accreditation for sleep medicine. CONCLUSIONS: The survey highlights the need for standardized sleep medicine training and accreditation across Asia. Developing an Asian Sleep Medicine Training Curriculum and promoting ASSM accreditation guidelines are key recommendations. Implementing these strategies is essential for advancing sleep medicine as a widely recognized discipline throughout Asia.

6.
Inorg Chem ; 63(24): 11361-11368, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38815165

ABSTRACT

Herein, we report the synthesis of a flexible bis-cyclopentadienyl ligand L (the doubly deprotonated form of H2L (1,3-bis(2,4-di-tert-butylcyclopentadienyldimethylsilyl)benzene)), demonstrating its ability to stabilize a series of di-iron hydrido complexes. Notably, this ligand facilitates the isolation of an unprecedented anionic cyclopentadienyl ligand-supported di-iron trihydride complex, LFe2(µ-H)3Li(THF) (2), functioning as a synthon for the [Fe2(µ-H)3]- core and providing access to heterobimetallic complexes 4-6 with coinage metals.

7.
Langmuir ; 40(18): 9717-9724, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712354

ABSTRACT

Connectivity isomerization of the same aromatic molecular core with different substitution positions profoundly affects electron transport pathways and single-molecule conductance. Herein, we designed and synthesized all connectivity isomers of a thiophene (TP) aromatic ring substituted by two dihydrobenzo[b]thiophene (BT) groups with ethynyl spacers (m,n-TP-BT, (m,n = 2,3; 2,4; 2,5; 3,4)), to systematically probe how connectivity contributes to single-molecule conductance. Single-molecule conductance measurements using a scanning tunneling microscopy break junction (STM-BJ) technique show ∼12-fold change in conductance values, which follow an order of 10-4.83 G0 (2,4-TP-BT) < 10-4.78 G0 (3,4-TP-BT) < 10-4.06 G0 (2,3-TP-BT) < 10-3.75 G0 (2,5-TP-BT). Electronic structure analysis and theoretical simulations show that the connectivity isomerization significantly changes electron delocalization and HOMO-LUMO energy gaps. Moreover, the connectivity-dependent molecular structures lead to different quantum interference (QI) effects in electron transport, e.g., a strong destructive QI near E = EF leads the smallest conductance value for 2,4-TP-BT. This work proves a clear relationship between the connectivity isomerization and single-molecule conductance of thiophene heterocyclic molecular junctions for the future design of molecular devices.

8.
Article in English | MEDLINE | ID: mdl-38747223

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a prevalent neurodegenerative condition among the elderly population and the most common form of dementia, however, we lack potent interventions to arrest its inherent pathogenic vectors. Robust evidence indicates thermoregulatory perturbations during and before the onset of symptoms. Therefore, temperature-regulated biomarkers may offer clues to therapeutic targets during the presymptomatic stage. OBJECTIVE: The purpose of this study is to develop and assess a thermoregulation-related gene prediction model for Alzheimer's Disease diagnosis. METHOD: This study aims to utilize microarray bioinformatic analysis to identify the potential biomarkers of AD by analyzing four microarray datasets (GSE48350, GSE5281, GSE122063, and GSE181279) of AD patients. Furthermore, thermoregulation-associated hub genes were identified, and the expression patterns in the brain were explored. In addition, we explored the infiltration of immune cells with thermoregulation-related hub genes. Diagnostic marker validation was then performed at the single-cell level. Finally, the prediction of targeted drugs was performed based on the hub genes. RESULTS: Through the analysis of four datasets pertaining to AD, a total of five genes associated with temperature regulation were identified. Notably, CCK, CXCR4, SLC27A4, and SLC17A6 emerged as diagnostic markers indicative of AD-related brain injury. Furthermore, in the examination of peripheral blood samples from AD patients, SLC27A4 and CXCR4 were identified as pivotal diagnostic indicators. Regrettably, animal experimentation was not pursued to validate the data; rather, an assessment of temperature regulation-related genes was conducted. Future investigations will be undertaken to establish the correlation between these genes and AD pathology. CONCLUSION: Overall, CCK, CXCR4, SLC27A4, and SLC17A6 can be considered pivotal biomarkers for diagnosing the pathogenesis and molecular functions of AD.

9.
Article in English | MEDLINE | ID: mdl-38778616

ABSTRACT

BACKGROUND: Epilepsy is a serious neurological disorder that affects millions of people each year, often leading to cognitive issues and reduced quality of life. Medication is the main treatment, but many patients experience negative side effects. Male Sprague-Dawley (SD) rats were chosen as experimental animals for this experiment due to their physiological and genetic similarities to humans, cost-effectiveness, and ease of handling in a laboratory setting. AIMS: The objective of this study was to assess the neuroprotective properties of baicalin (BA) in relation to its impact on anxiety and depressive-like behaviors in the epilepsy model. METHODS: Thirty male Sprague-Dawley (SD) rats were selected for this experiment. Pentylenetetrazol (PTZ) kindling (40 mg/kg; i.p.) was utilized to establish an epilepsy model. The effect of BA (50 mg/kg; gavage) on seizure severity (assessed using the Racine scale), anxiety, and depressive- like behaviors (evaluated through open field experiments and forced swimming tests) was examined. Histological examinations, including hematoxylin and eosin (HE) staining and Nissl staining, were conducted to assess neuronal damage. Furthermore, the neuroprotective properties of BA were examined through the analysis of Doublecortin (DCX), MKI67 (KI67), and Brain-Derived Neurotrophic Factor (BDNF) levels in the hippocampus of rats. The inhibitory impact of BA on neuroinflammation was assessed via dual labeling for NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and the microglial marker ionized calcium- binding adapter molecule 1 (Iba-1). The influence of BA on the expression of P2X7 receptor (P2X7R), NLRP3, and Interleukin-1ß (IL-1ß) was also assessed by reverse transcription quantitative PCR (RT-qPCR) in the brain. Finally, we employed a molecular docking model to assess the extent of receptor-ligand binding. RESULTS: Epilepsy models exhibited significant anxiety and depressive-like behaviors, and BA significantly reduced the severity of seizures in these rats while also alleviating their anxiety and depressive-like behaviors. Moreover, neuronal loss and damage were observed in the hippocampus of epileptic rats, but BA was able to effectively counteract this issue by enhancing BDNF expression and promoting neurogenesis within the hippocampus, especially in the DG region. The co-localization of Iba-1 with NLRP3 indicated the activation of NLRP3 inflammasome in microglia. Subsequent RT-PCR revealed that BA may alleviate anxiety and depressive-like behaviors in epileptic rats by activating the P2RX7/NLRP3/ IL-1ß signaling pathway. The final molecular docking results indicated that BA had a good binding affinity with proteins, such as P2RX7, NLRP3, and IL-1ß. CONCLUSION: This study confirmed the effectiveness of BA in improving anxiety and depressivelike behaviors associated with epilepsy. Moreover, it provides theoretical support for the neuroprotective role demonstrated by BA.

10.
Bioact Mater ; 37: 407-423, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38689660

ABSTRACT

Traditional optical waveguides or mediums are often silica-based materials, but their applications in biomedicine and healthcare are limited due to the poor biocompatibility and unsuitable mechanical properties. In term of the applications in human body, a biocompatible hydrogel system with excellent optical transparency and mechanical flexibility could be beneficial. In this review, we explore the different designs of hydrogel-based optical waveguides derived from natural and synthetic sources. We highlighted key developments such as light emitting contact lenses, implantable optical fibres, biosensing systems, luminating and fluorescent materials. Finally, we expand further on the challenges and perspectives for hydrogel waveguides to achieve clinical applications.

11.
Med Educ ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597258

ABSTRACT

INTRODUCTION: Professional identity formation (PIF) is a central tenet of effective medical education. However, efforts to support, assess and study PIF are hindered by unclear definitions and conceptualisations of what it means to 'think, act, and feel like a physician'. Gaps in understanding PIF, and by extension, its support mechanisms, can predispose individuals towards disengaged or unprofessional conduct and institutions towards short-sighted or reactionary responses to systemic issues. METHODS: A Systematic Evidence-Based Approach-guided systematic scoping review of PIF theories was conducted related to medical students, trainees and practising doctors, published between 1 January 2000 and 31 December 2021 in PubMed, Embase, ERIC and Scopus databases. RESULTS: A total of 2441 abstracts were reviewed, 607 full-text articles evaluated and 204 articles included. The domains identified were understanding PIF through the lens of pivotal theories and characterising PIF by delineating the underlying factors that influence it and processes that define it. CONCLUSIONS: Based on regnant theories and frameworks related to self-concepts of identity and personhood, the relationships between key PIF influences, processes and outcomes were examined. A theory-backed integrated conceptual model was proposed to delineate the interconnected relationships among these, aiming to untangle some of the complexities inherent to PIF, to shed light on existing practices and to identify shortcomings in our understanding so as to develop mechanisms in support of its multifaceted, interlinked components.

12.
Front Pharmacol ; 15: 1377876, 2024.
Article in English | MEDLINE | ID: mdl-38567357

ABSTRACT

Introduction: Acori Tatarinowii Rhizoma (ATR) is a well-known traditional Chinese medicine that is used for treating neuropathic diseases. However, there is little information about the safety of ATR. Methods: The present study evaluated the acute and subacute oral toxicity of a water extract of ATR in Institute of Cancer Research (ICR) mice. In acute trials, a single administration of extract at a dose 5,000 mg/kg body weight led to no clinical signs of toxicity or mortality, indicating that the lethal dose (LD50) exceeded 5,000 mg/kg. A subacute toxicity test was done using daily doses of 1,250, 2,500, and 5,000 mg/kg of the ATR extract for 28 days, which did not show any adverse clinical symptoms or mortality. However, the male renal organ index and urea level in mice given 5,000 mg/kg was obviously abnormal, which was consistent with pathological results and suggested that this dose might cause kidney injury. Results: Doses of ATR lower than 2,500 mg/kg could be regarded as safe, although the potential cumulative effects of long-term use of high doses of ATR need to be considered. Discussion: The study highlights the function of ATR in reducing blood lipids and provides a new idea for its widespread clinical use in the future.

13.
Nanomicro Lett ; 16(1): 169, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587615

ABSTRACT

With the continuous advancement of communication technology, the escalating demand for electromagnetic shielding interference (EMI) materials with multifunctional and wideband EMI performance has become urgent. Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest, but remain a huge challenge. Herein, we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose (HMN) by alternating vacuum-assisted filtration process. The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency (66.8 dB at Ka-band) and THz frequency (114.6 dB at 0.1-4.0 THz). Besides, the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz. Moreover, HMN composite films show remarkable photothermal conversion performance, which can reach 104.6 °C under 2.0 Sun and 235.4 °C under 0.8 W cm-2, respectively. The unique micro- and macro-structural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect. These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124252, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38593541

ABSTRACT

The symmetrically double-armed salamo type fluorescent sensor BMS, incorporating benzimidazole units, was designed and synthesized. Showcasing remarkable specificity and responsiveness to MnO4- within a DMSO:H2O (V/V = 9:1, pH = 7.2) Tris-HCl buffer medium, it enabled dual-channel detection of MnO4- through fluorescent and colorimetric changes. Critical experimental parameters, including detection and quantification thresholds (LOD and LOQ) along with binding affinity constants (Ka), were calculated using the Origin software. A rational interaction mechanism between BMS and MnO4- was deduced, based on fluorescence titration, Electrospray Ionization Mass Spectrometry (ESI-MS), Ultraviolet-Visible Spectroscopy (UV-Vis), Infrared Spectroscopy (IR), Stern-Volmer plots, and Density Functional Theory (DFT) computations. Additionally, the sensor BMS was applied to monitor MnO4- in real water samples. Advancing its practical utility, BMS was fabricated into test strips for the selective detecting of MnO4-.

15.
Heliyon ; 10(7): e28629, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38590883

ABSTRACT

Objectives: The present study was conducted to explore the performance of micronutrients in the prediction and prevention of coronavirus disease 2019 (COVID-19). Methods: This is an observational case-control study. 149 normal controls (NCs) and 214 COVID-19 patients were included in this study. Fat-soluble and water-soluble vitamins were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, and inorganic elements were detected by inductively coupled plasma-mass spectrometry (ICP-MS) analysis. A logistic regression model based on six micronutrients were constructed using DxAI platform. Results: Many micronutrients were dysregulated in COVID-19 compared to normal control (NC). 25-Hydroxyvitamin D3 [25(OH)D3], magnesium (Mg), copper (Cu), calcium (Ca) and vitamin B6 (pyridoxic acid, PA) were significantly independent risk factors for COVID-19. The logistic regression model consisted of 25(OH)D3, Mg, Cu, Ca, vitamin B5 (VB5) and PA was developed, and displayed a strong discriminative capability to differentiate COVID-19 patients from NC individuals [area under the receiver operating characteristic curve (AUROC) = 0.901]. In addition, the model had great predictive ability in discriminating mild/normal COVID-19 patients from NC individuals (AUROC = 0.883). Conclusions: Our study showed that micronutrients were associated with COVID-19, and our logistic regression model based on six micronutrients has potential in clinical management of COVID-19, and will be useful for prediction of COVID-19 and screening of high-risk population.

16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 617-624, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38660875

ABSTRACT

OBJECTIVE: To establish a mesenchymal stem cell(MSC)-based in vitro cell model for the evaluation of mouse bone marrow acute graft-versus-host disease (aGVHD). METHODS: Female C57BL/6N mice aged 6-8 weeks were used as bone marrow and lymphocyte donors, and female BALB/c mice aged 6-8 weeks were used as aGVHD recipients. The recipient mouse received a lethal dose (8.0 Gy,72.76 cGy/min) of total body γ irradiation, and injected with donor mouse derived bone marrow cells (1×107/mouse) in 6-8 hours post irradiation to establish a bone marrow transplantation (BMT) mouse model (n=20). In addition, the recipient mice received a lethal dose (8.0 Gy,72.76 cGy/min) of total body γ irradiation, and injected with donor mouse derived bone marrow cells (1×107/mouse) and spleen lymphocytes (2×106/mouse) in 6-8 hours post irradiation to establish a mouse aGVHD model (n=20). On the day 7 after modeling, the recipient mice were anesthetized and the blood was harvested post eyeball enucleation. The serum was collected by centrifugation. Mouse MSCs were isolated and cultured with the addition of 2%, 5%, and 10% recipient serum from BMT group or aGVHD group respectively. The colony-forming unit-fibroblast(CFU-F) experiment was performed to evaluate the potential effects of serums on the self-renewal ability of MSC. The expression of CD29 and CD105 of MSC was evaluated by immunofluorescence staining. In addition, the expression of self-renewal-related genes including Oct-4, Sox-2, and Nanog in MSC was detected by real-time fluorescence quantitative PCR(RT-qPCR). RESULTS: We successfully established an in vitro cell model that could mimic the bone marrow microenvironment damage of the mouse with aGVHD. CFU-F assay showed that, on day 7 after the culture, compared with the BMT group, MSC colony formation ability of aGVHD serum concentrations groups of 2% and 5% was significantly reduced (P < 0.05); after the culture, at day 14, compared with the BMT group, MSC colony formation ability in different aGVHD serum concentration was significantly reduced (P < 0.05). The immunofluorescence staining showed that, compared with the BMT group, the proportion of MSC surface molecules CD29+ and CD105+ cells was significantly dereased in the aGVHD serum concentration group (P < 0.05), the most significant difference was at a serum concentration of 10% (P < 0.001, P < 0.01). The results of RT-qPCR detection showed that the expression of the MSC self-renewal-related genes Oct-4, Sox-2, and Nanog was decreased, the most significant difference was observed at an aGVHD serum concentration of 10% (P < 0.01,P < 0.001,P < 0.001). CONCLUSION: By co-culturing different concentrations of mouse aGVHD serum and mouse MSC, we found that the addition of mouse aGVHD serum at different concentrations impaired the MSC self-renewal ability, which providing a new tool for the field of aGVHD bone marrow microenvironment damage.


Subject(s)
Bone Marrow Transplantation , Disease Models, Animal , Graft vs Host Disease , Mesenchymal Stem Cells , Mice, Inbred BALB C , Mice, Inbred C57BL , Animals , Mice , Female , Mesenchymal Stem Cells/cytology , Bone Marrow Cells/cytology , Cellular Microenvironment , Bone Marrow , Rats
17.
J Hazard Mater ; 471: 134346, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38653139

ABSTRACT

Soil, particularly in agricultural regions, has been recognized as one of the significant reservoirs for the emerging contaminant of MPs. Therefore, developing a rapid and efficient method is critical for their identification in soil. Here, we coupled HSI systems [i.e., VNIR (400-1000 nm), InGaAs (800-1600 nm), and MCT (1000-2500 nm)] with machine learning algorithms to distinguish soils spiked with white PE and PA (average size of 50 and 300 µm, respectively). The soil-normalized SWIR spectra unveiled significant spectral differences not only between control soil and pure MPs (i.e., PE 100% and PA 100%) but also among five soil-MPs mixtures (i.e., PE 1.6%, PE 6.9%, PA 5.0%, and PA 11.3%). This was primarily attributable to the 1st-3rd overtones and combination bands of C-H groups in MPs. Feature reductions visually demonstrated the separability of seven sample types by SWIR and the inseparability of five soil-MPs mixtures by VNIR. The detection models achieved higher accuracies using InGaAs (92-100%) and MCT (97-100%) compared to VNIR (44-87%), classifying 7 sample types. Our study indicated the feasibility of InGaAs and MCT HSI systems in detecting PE (as low as 1.6%) and PA (as low as 5.0%) in soil. SYNOPSIS: One of two SWIR HSI systems (i.e., InGaAs and MCT) with a sample imaging surface area of 3.6 mm² per grid cell was sufficient for detecting PE (as low as 1.6%) and PA (as low as 5.0%) in soils without the digestion and separation procedures.

18.
Zhongguo Gu Shang ; 37(2): 119-23, 2024 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-38425060

ABSTRACT

OBJECTIVE: To investigate the preliminary clinical effect of closed reduction and cannulated nail internal fixation for femoral neck fracture assisted by robot navigation and positioning system. METHODS: From July 2019 to January 2020, 16 cases of femoral neck fracture (navigation group) were treated with closed reduction and internal fixation guided by robot system, including 7 males and 9 females, aged 25 to 72 years old with an average of (53.61±5.45) years old;Garden classification of fracture:3 cases of typeⅠ, 3 cases of typeⅡ, 8 cases of type Ⅲ, 2 cases of type Ⅳ. Non navigation group (control group):20 cases of femoral neck fracture were treated with closed reduction and hollow nail internal fixation, 8 males and 12 females, aged 46 to 70 years old with an average of (55.23±4.64) years old;Garden typeⅠin 2 cases, typeⅡin 4 cases, type Ⅲ in 11 cases, type Ⅳ in 3 cases. The operation time, fluoroscopy times, guide needle drilling times, screw adjustment times, intraoperative bleeding volume and other indicators of two groups were evaluated. RESULTS: Both groups were followed up for 12 to 18 months with an average of (15.6±2.8) months. The fractures of both groups were healed without delayed union and nonunion. There was no significant difference in healing time between two groups(P=0.782). There was no significant difference in Harris scores between two groups at the last follow-up(P=0.813). There was no significant difference in operation time between two groups(P>0.05). There were significant differences between two groups in fluoroscopy times, guide needle drilling times, hollow screw replacement times, and intraoperative bleeding volume(P<0.05). CONCLUSION: Closed reduction and hollow screw internal fixation assisted by robot navigation system for femoral neck fracture has the advantages of minimally invasive operation, precise screw placement, and reduction of X-ray radiation damage during operation.


Subject(s)
Femoral Neck Fractures , Orthopedics , Robotics , Male , Female , Humans , Adult , Middle Aged , Aged , Treatment Outcome , Femoral Neck Fractures/surgery , Bone Screws , Fracture Fixation, Internal , Fracture Healing , Retrospective Studies
19.
Int J Phytoremediation ; 26(9): 1453-1464, 2024.
Article in English | MEDLINE | ID: mdl-38505937

ABSTRACT

The improvement of biosorption efficiency for selective dye removal in a multi-dye aqueous system has become an increasingly significant research topic. However, the competitive effects of coexisting dyes and the target dye in such systems remain uncertain due to complex interactions between adsorbent and coexisting dyes. Therefore, in this research, response surface methodology (RSM) model was effectively employed to investigate the competitive effects of allura red (AR) and malachite green (MG) on methylene blue (MB) removal in a ternary dye aqueous system using three different parts of rape straw powders. In the current design of RSM, the initial concentrations of AR and MG dyes ranging from 0 mg·L-1 to 500 mg·L-1 were considered as influencing factors, while the removal rates of MB on adsorbents at an initial concentration of 500 mg·L-1 were established as response values. The RSM models exhibited high correlation coefficients with adjusted R2 values of 0.9908 (pith core), 0.9870 (seedpods), and 0.9902 (shells), respectively, indicating a close fitted between predicted and actual values. The proposed models indicated that the perturbation effects of initial AR and MG concentrations were observed on the removal rates of MB by three types of rape straw powders in a ternary dye aqueous system, resulting in a decrease in MB removal rates, particularly at higher initial AR concentration due to stronger competitive effects compared to initial MG concentration. The structures of rape straw powders, including pith core, seedpods and shell, were analyzed using scanning eletron microscoe (SEM), energy dispersive spectroscopy (EDS), N2 physisorption isotherm, frourier transform infared spectroscopy (FTIR), Zeta potential classes and fluorescence spectrum before and after adsorption of MB in various dye aqueous systems. The characteristics of rape straw powders suggested that similar adsorption mechanisms, such as electrostatic attraction, pore diffusion, and group complex formation for MB, AR, and MG, respectively, occurred on the surfaces of adsorbents during their respective adsorption processes. This leads to significant competitive effects on the removal rates of MB in a ternary dye aqueous system, which are particularly influenced by initial AR concentrations as confirmed through fluorescence spectrum analysis.


Impact of AR and MG on MB removal was analyzed using simple methodologies.Competitive behaviors between AR, MG and MB were understood through RSM.Intense restrain effects on MB removal were revealed by AR concentration.


Subject(s)
Biodegradation, Environmental , Coloring Agents , Methylene Blue , Powders , Water Pollutants, Chemical , Adsorption , Coloring Agents/chemistry , Rosaniline Dyes/chemistry , Brassica rapa , Azo Compounds , Waste Disposal, Fluid/methods
20.
Behav Brain Res ; 465: 114968, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38521360

ABSTRACT

PURPOSE: Depression is a psychiatric disorder and the treatment of depression is an urgent problem that need to be solved. Gastrodin (GAS) is a Traditional Chinese Medicine from an orchid and is used for neurological diseases, including depressive disorders. METHODS: To assess the effect of GAS on gut microbiota of depressive mice, we established a chronic unpredictable mild stress (CUMS)-induced mouse model, and GAS was administered to one group of the mice. Animal behavior experiments were used to detect depressive-like behaviors, and 16 S rRNA gene analysis was applied to detect the gut microbiota of each group. All raw sequences were deposited in the NCBI Sequence Read Archive under accession number SRP491061. RESULTS: GAS treatment significantly improved depressive-like behaviors as well as the diversity and abundance of the gut microbiota. The depressive-like behaviors of the CUMS-GAS group were improved in different degrees compared with the CUMS group. The linear discriminant analysis (LDA) of the gut microbiota showed that the makeup of the gut microbiota in mice changed dramatically in the CUMS-GAS group, compared with the CUMS group, Bacteroides (LDA = 3.94, P < 0.05) were enriched in the CUMS-GAS group at the genus level. In comparison to the CUMS group, the CUMS-GAS group had a greater concentration numbers of Lactobacillus, Corynebacterium, Staphylococcus, Bacteroides, Psychrobacter, and Alistipes. CONCLUSION: Our results suggested that GAS improved depressive-like behaviors in mice and impacted the microbial composition of the gut. Our research indicated that dysbiosis of the gut microbiota may be affected by GAS treatment, which improved depressive-like behaviors in the CUMS-induced mouse model of depression.


Subject(s)
Benzyl Alcohols , Depression , Gastrointestinal Microbiome , Glucosides , Humans , Mice , Animals , Depression/drug therapy , Depression/psychology , Behavior, Animal , Stress, Psychological/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...