Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38979317

ABSTRACT

When species disperse into previously unoccupied habitats, new populations encounter unfamiliar species interactions such as altered parasite loads. Theory predicts that newly founded populations should exhibit destabilized eco-evolutionary fluctuations in infection rates and immune traits. However, to understand founder effects biologists typically rely on retrospective studies of range expansions, missing early-generation infection dynamics. To remedy this, we experimentally founded whole-lake populations of threespine stickleback. Infection rates were temporally stable in native source lakes. In contrast, newly founded populations exhibit destabilized host-parasite dynamics: high starting infection rates led to increases in a heritable immune trait (peritoneal fibrosis), suppressing infection rates. The resulting temporal auto-correlation between infection and immunity suggest that newly founded populations can exhibit rapid host-parasite eco-evolutionary dynamics.

2.
Article in English | MEDLINE | ID: mdl-38858075

ABSTRACT

What drives the emergence of new species has fascinated biologists since Darwin. Reproductive barriers to gene flow are a key step in the formation of species, and recent advances have shed new light on how these are established. Genetic, genomic, and comparative techniques, together with improved theoretical frameworks, are increasing our understanding of the underlying mechanisms. They are also helping us forecast speciation and reveal the impact of human activity.

3.
Ecol Evol ; 14(6): e11503, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932947

ABSTRACT

Eco-evolutionary experiments are typically conducted in semi-unnatural controlled settings, such as mesocosms; yet inferences about how evolution and ecology interact in the real world would surely benefit from experiments in natural uncontrolled settings. Opportunities for such experiments are rare but do arise in the context of restoration ecology-where different "types" of a given species can be introduced into different "replicate" locations. Designing such experiments requires wrestling with consequential questions. (Q1) Which specific "types" of a focal species should be introduced to the restoration location? (Q2) How many sources of each type should be used-and should they be mixed together? (Q3) Which specific source populations should be used? (Q4) Which type(s) or population(s) should be introduced into which restoration sites? We recently grappled with these questions when designing an eco-evolutionary experiment with threespine stickleback (Gasterosteus aculeatus) introduced into nine small lakes and ponds on the Kenai Peninsula in Alaska that required restoration. After considering the options at length, we decided to use benthic versus limnetic ecotypes (Q1) to create a mixed group of colonists from four source populations of each ecotype (Q2), where ecotypes were identified based on trophic morphology (Q3), and were then introduced into nine restoration lakes scaled by lake size (Q4). We hope that outlining the alternatives and resulting choices will make the rationales clear for future studies leveraging our experiment, while also proving useful for investigators considering similar experiments in the future.

4.
Evolution ; 78(4): 652-664, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38288653

ABSTRACT

Intrinsic postzygotic hybrid incompatibilities are usually due to negative epistatic interactions between alleles from different parental genomes. While such incompatibilities are thought to be uncommon in speciation with gene flow, they may be important if such speciation results from a hybrid population. Here we aimed to test this idea in the endemic cichlid fishes of Lake Victoria. Hundreds of species have evolved within the lake in <15k years from hybrid progenitors. While the importance of prezygotic barriers to gene flow is well established in this system, the possible relevance of postzygotic genetic incompatibilities is unknown. We inferred the presence of negative epistatic interactions from systematic patterns of genotype ratio distortions in experimental crosses and wild samples. We then compared the positions of putative incompatibility loci to regions of high genetic differentiation between sympatric sister species and between members of clades that may have arisen in the early history of this radiation, and further determined if the loci showed fixed differences between the closest living relatives of the lineages ancestral to the hybrid progenitors. Overall, we find little evidence for a major role of intrinsic postzygotic incompatibilities in the Lake Victoria radiation. However, we find putative incompatibility loci significantly more often coinciding with islands of genetic differentiation between species that separated early in the radiation than between the younger sister species, consistent with the hypothesis that such variants segregated in the hybrid swarm and were sorted between species in the early speciation events.


Subject(s)
Cichlids , Lakes , Animals , Cichlids/genetics , Genome , Gene Flow , Genetic Speciation
5.
Trends Ecol Evol ; 39(4): 396-407, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38155043

ABSTRACT

When diverse lineages repeatedly adapt to similar environmental challenges, the extent to which the same genes are involved (gene reuse) varies across systems. We propose that divergence time among lineages is a key factor driving this variability: as lineages diverge, the extent of gene reuse should decrease due to reductions in allele sharing, functional differentiation among genes, and restructuring of genome architecture. Indeed, we show that many genomic studies of repeated adaptation find that more recently diverged lineages exhibit higher gene reuse during repeated adaptation, but the relationship becomes less clear at older divergence time scales. Thus, future research should explore the factors shaping gene reuse and their interplay across broad divergence time scales for a deeper understanding of evolutionary repeatability.


Subject(s)
Biological Evolution , Genome , Genomics
6.
J Evol Biol ; 36(12): 1761-1782, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37942504

ABSTRACT

Inversions are structural mutations that reverse the sequence of a chromosome segment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as speciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given recent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach.


Subject(s)
Chromosome Inversion , Chromosomes , Humans , Heterozygote , Evolution, Molecular
7.
Mol Ecol ; 2023 May 16.
Article in English | MEDLINE | ID: mdl-37194086

ABSTRACT

A main goal of evolutionary biology is to understand the genetic basis of adaptive evolution. Although the genes that underlie some adaptive phenotypes are now known, the molecular pathways and regulatory mechanisms mediating the phenotypic effects of those genes often remain a black box. Unveiling this black box is necessary to fully understand the genetic basis of adaptive phenotypes, and to understand why particular genes might be used during phenotypic evolution. Here, we investigated which genes and regulatory mechanisms are mediating the phenotypic effects of the Eda haplotype, a locus responsible for the loss of lateral plates and changes in the sensory lateral line of freshwater threespine stickleback (Gasterosteus aculeatus) populations. Using a combination of RNAseq and a cross design that isolated the Eda haplotype on a fixed genomic background, we found that the Eda haplotype affects both gene expression and alternative splicing of genes related to bone development, neuronal development and immunity. These include genes in conserved pathways, like the BMP, netrin and bradykinin signalling pathways, known to play a role in these biological processes. Furthermore, we found that differentially expressed and differentially spliced genes had different levels of connectivity and expression, suggesting that these factors might influence which regulatory mechanisms are used during phenotypic evolution. Taken together, these results provide a better understanding of the mechanisms mediating the effects of an important adaptive locus in stickleback and suggest that alternative splicing could be an important regulatory mechanism mediating adaptive phenotypes.

8.
Evolution ; 77(1): 110-122, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36622692

ABSTRACT

Recent studies have shown that the repeated evolution of similar phenotypes in response to similar ecological conditions (here "parallel evolution") often occurs through mutations in the same genes. However, many previous studies have focused on known candidate genes in a limited number of systems. Thus, the question of how often parallel phenotypic evolution is due to parallel genetic changes remains open. Here, we used quantitative trait locus (QTL) mapping in F2 intercrosses between lake and stream threespine stickleback (Gasterosteus aculeatus) from four independent watersheds on Vancouver Island, Canada to determine whether the same QTL underlie divergence in the same phenotypes across, between, and within watersheds. We find few parallel QTL, even in independent crosses from the same watershed or for phenotypes that have diverged in parallel. These findings suggest that different mutations can lead to similar phenotypes. The low genetic repeatability observed in these lake-stream systems contrasts with the higher genetic repeatability observed in other stickleback systems. We speculate that differences in evolutionary history, gene flow, and/or the strength and direction of selection might explain these differences in genetic parallelism and emphasize that more work is needed to move beyond documenting genetic parallelism to identifying the underlying causes.


Subject(s)
Smegmamorpha , Animals , Smegmamorpha/genetics , Rivers , Lakes , Phenotype , Genetic Drift
9.
Mol Ecol ; 32(7): 1592-1607, 2023 04.
Article in English | MEDLINE | ID: mdl-36588349

ABSTRACT

Sexually antagonistic selection, which favours different optima in males and females, is predicted to play an important role in the evolution of sex chromosomes. Body size is a sexually antagonistic trait in the shell-brooding cichlid fish Lamprologous callipterus, as "bourgeois" males must be large enough to carry empty snail shells to build nests whereas females must be small enough to fit into shells for breeding. In this species, there is also a second male morph: smaller "dwarf" males employ an alternative reproductive strategy by wriggling past spawning females into shells to fertilize eggs. L. callipterus male morphology is passed strictly from father to son, suggesting Y-linkage. However, sex chromosomes had not been previously identified in this species, and the genomic basis of size dimorphism was unknown. Here we used whole-genome sequencing to identify a 2.4-Mb sex-linked region on scaffold_23 with reduced coverage and single nucleotide polymorphism density in both male morphs compared to females. Within this sex region, distinct Y-haplotypes delineate the two male morphs, and candidate genes for body size (GHRHR, a known dwarfism gene) and sex determination (ADCYAP1R1) are in high linkage disequilibrium. Because differences in body size between females and males are under strong selection in L. callipterus, we hypothesize that sexual antagonism over body size initiated early events in sex chromosome evolution, followed by Y divergence to give rise to bourgeois and dwarf male reproductive strategies. Our results are consistent with the hypothesis that sexually antagonistic traits should be linked to young sex chromosomes.


Subject(s)
Cichlids , Dwarfism , Animals , Female , Male , Cichlids/genetics , Cichlids/anatomy & histology , Reproduction/genetics , Fertilization , Sex Characteristics , Genomics
10.
Ecol Lett ; 26(1): 111-123, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36450600

ABSTRACT

Species competing for resources also commonly share predators. While competition often drives divergence between species, the effects of shared predation are less understood. Theoretically, competing prey species could either diverge or evolve in the same direction under shared predation depending on the strength and symmetry of their interactions. We took an empirical approach to this question, comparing antipredator and trophic phenotypes between sympatric and allopatric populations of threespine stickleback and prickly sculpin fish that all live in the presence of a trout predator. We found divergence in antipredator traits between the species: in sympatry, antipredator adaptations were relatively increased in stickleback but decreased in sculpin. Shifts in feeding morphology, diet and habitat use were also divergent but driven primarily by stickleback evolution. Our results suggest that asymmetric ecological character displacement indirectly made stickleback more and sculpin less vulnerable to shared predation, driving divergence of antipredator traits between sympatric species.


Subject(s)
Perciformes , Smegmamorpha , Animals , Predatory Behavior , Ecosystem , Fishes , Smegmamorpha/genetics , Smegmamorpha/anatomy & histology , Acclimatization
11.
Proc Natl Acad Sci U S A ; 119(30): e2122152119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858399

ABSTRACT

The rediscovery of Mendel's work showing that the heredity of phenotypes is controlled by discrete genes was followed by the reconciliation of Mendelian genetics with evolution by natural selection in the middle of the last century with the Modern Synthesis. In the past two decades, dramatic advances in genomic methods have facilitated the identification of the loci, genes, and even individual mutations that underlie phenotypic variants that are the putative targets of natural selection. Moreover, these methods have also changed how we can study adaptation by flipping the problem around, allowing us to first examine what loci show evidence of having been under selection, and then connecting these genetic variants to phenotypic variation. As a result, we now have an expanding list of actual genetic changes that underlie potentially adaptive phenotypic variation. Here, we synthesize how considering the effects of these adaptive loci in the context of cellular environments, genomes, organisms, and populations has provided new insights to the genetic architecture of adaptation.


Subject(s)
Adaptation, Physiological , Genetic Variation , Selection, Genetic , Adaptation, Physiological/genetics , Biological Evolution , Genetics , Phenotype
12.
J Evol Biol ; 35(12): 1683-1695, 2022 12.
Article in English | MEDLINE | ID: mdl-35816592

ABSTRACT

Sex chromosomes vary greatly in their age and levels of differentiation across the tree of life. This variation is largely due to the rates of sex chromosome turnover in different lineages; however, we still lack an explanation for why sex chromosomes are so conserved in some lineages (e.g. mammals, birds) but so labile in others (e.g. teleosts, amphibians). To identify general mechanisms driving transitions in sex determination systems or forces which favour their conservation, we first require empirical data on sex chromosome systems from multiple lineages. Stickleback fishes are a valuable model lineage for the study of sex chromosome evolution due to variation in sex chromosome systems between closely-related species. Here, we identify the sex chromosome and a strong candidate for the master sex determination gene in the brook stickleback, Culaea inconstans. Using whole-genome sequencing of wild-caught samples and a lab cross, we identify AmhY, a male specific duplication of the gene Amh, as the candidate master sex determination gene. AmhY resides on Chromosome 20 in C. inconstans and is likely a recent duplication, as both AmhY and the sex-linked region of Chromosome 20 show little sequence divergence. Importantly, this duplicate AmhY represents the second independent duplication and recruitment of Amh as the sex determination gene in stickleback and the eighth example known across teleosts. We discuss this convergence in the context of sex chromosome turnovers and the role that the Amh/AmhrII pathway, which is crucial for sex determination, may play in the evolution of sex chromosomes in teleosts.


Subject(s)
Smegmamorpha , Animals , Smegmamorpha/genetics , Sex Determination Processes , Sex Chromosomes/genetics , Fishes/genetics , Evolution, Molecular , Mammals/genetics
13.
Philos Trans R Soc Lond B Biol Sci ; 377(1856): 20210205, 2022 08.
Article in English | MEDLINE | ID: mdl-35694749

ABSTRACT

Intralocus sexually antagonistic selection occurs when an allele is beneficial to one sex but detrimental to the other. This form of selection is thought to be key to the evolution of sex chromosomes but is hard to detect. Here we perform an analysis of phased young sex chromosomes to look for signals of sexually antagonistic selection in the Japan Sea stickleback (Gasterosteus nipponicus). Phasing allows us to date the suppression of recombination on the sex chromosome and provides unprecedented resolution to identify sexually antagonistic selection in the recombining region of the chromosome. We identify four windows with elevated divergence between the X and Y in the recombining region, all in or very near genes associated with phenotypes potentially under sexually antagonistic selection in humans. We are unable, however, to rule out the alternative hypothesis that the peaks of divergence result from demographic effects. Thus, although sexually antagonistic selection is a key hypothesis for the formation of supergenes on sex chromosomes, it remains challenging to detect. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.


Subject(s)
Smegmamorpha , Alleles , Animals , Japan , Phenotype , Sex Chromosomes/genetics , Smegmamorpha/genetics
14.
G3 (Bethesda) ; 12(2)2022 02 04.
Article in English | MEDLINE | ID: mdl-35100353

ABSTRACT

The sex chromosomes of the guppy, Poecilia reticulata, and its close relatives are of particular interest: they are much younger than the highly degenerate sex chromosomes of model systems such as humans and Drosophila melanogaster, and they carry many of the genes responsible for the males' dramatic coloration. Over the last decade, several studies have analyzed these sex chromosomes using a variety of approaches including sequencing genomes and transcriptomes, cytology, and linkage mapping. Conflicting conclusions have emerged, in particular concerning the history of the sex chromosomes and the evolution of suppressed recombination between the X and Y. Here, we address these controversies by reviewing the evidence and reanalyzing data. We find no evidence of a nonrecombining sex-determining region or evolutionary strata in P. reticulata. Furthermore, we find that the data most strongly support the hypothesis that the sex-determining regions of 2 close relatives of the guppy, Poecilia wingei and Micropoecilia picta, evolved independently after their lineages diverged. We identify possible causes of conflicting results in previous studies and suggest best practices going forward.


Subject(s)
Poecilia , Animals , Chromosome Mapping , Drosophila melanogaster/genetics , Genome , Male , Poecilia/genetics , Sex Chromosomes/genetics
15.
Mol Ecol ; 31(5): 1476-1486, 2022 03.
Article in English | MEDLINE | ID: mdl-34997980

ABSTRACT

Highly pleiotropic genes are predicted to be used less often during adaptation, as mutations in these loci are more likely to have negative fitness consequences. Following this logic, we tested whether pleiotropy impacts the probability that a locus will be used repeatedly in adaptation. We used two proxies to estimate pleiotropy: number of phenotypic traits affected by a given genomic region and gene connectivity. We first surveyed 16 independent stream-lake and three independent benthic-limnetic ecotype pairs of threespine stickleback to estimate genome-wide patterns in parallel genomic differentiation. Our analysis revealed parallel divergence across the genome; 30%-37% of outlier regions were shared between at least two independent pairs in either the stream-lake or benthic-limnetic comparisons. We then tested whether parallel genomic regions are less pleiotropic than nonparallel regions. Counter to our a priori prediction, parallel genomic regions contained genes with significantly more pleiotropy; that is, influencing a greater number of traits and more highly connected. The increased pleiotropy of parallel regions could not be explained by other genomic factors, as there was no significant difference in mean gene count, mutation or recombination rates between parallel and nonparallel regions. Interestingly, although nonparallel regions contained genes that were less connected and influenced fewer mapped traits on average than parallel regions, they also tended to contain the genes that were predicted to be the most pleiotropic. Taken together, our findings are consistent with the idea that pleiotropy only becomes constraining at high levels and that low or intermediate levels of pleiotropy may be beneficial for adaptation.


Subject(s)
Smegmamorpha , Acclimatization , Adaptation, Physiological/genetics , Animals , Genome/genetics , Phenotype , Smegmamorpha/genetics
16.
PLoS Biol ; 20(1): e3001469, 2022 01.
Article in English | MEDLINE | ID: mdl-35007278

ABSTRACT

Hybrid incompatibilities occur when interactions between opposite ancestry alleles at different loci reduce the fitness of hybrids. Most work on incompatibilities has focused on those that are "intrinsic," meaning they affect viability and sterility in the laboratory. Theory predicts that ecological selection can also underlie hybrid incompatibilities, but tests of this hypothesis using sequence data are scarce. In this article, we compiled genetic data for F2 hybrid crosses between divergent populations of threespine stickleback fish (Gasterosteus aculeatus L.) that were born and raised in either the field (seminatural experimental ponds) or the laboratory (aquaria). Because selection against incompatibilities results in elevated ancestry heterozygosity, we tested the prediction that ancestry heterozygosity will be higher in pond-raised fish compared to those raised in aquaria. We found that ancestry heterozygosity was elevated by approximately 3% in crosses raised in ponds compared to those raised in aquaria. Additional analyses support a phenotypic basis for incompatibility and suggest that environment-specific single-locus heterozygote advantage is not the cause of selection on ancestry heterozygosity. Our study provides evidence that, in stickleback, a coarse-albeit indirect-signal of environment-dependent hybrid incompatibility is reliably detectable and suggests that extrinsic incompatibilities can evolve before intrinsic incompatibilities.


Subject(s)
Ecosystem , Hybridization, Genetic/genetics , Smegmamorpha/genetics , Animals , Female , Genotype , Heterozygote , Male , Selection, Genetic
17.
Mol Biol Evol ; 39(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-34908155

ABSTRACT

Chromosomal fusions are hypothesized to facilitate adaptation to divergent environments, both by bringing together previously unlinked adaptive alleles and by creating regions of low recombination that facilitate the linkage of adaptive alleles; but, there is little empirical evidence to support this hypothesis. Here, we address this knowledge gap by studying threespine stickleback (Gasterosteus aculeatus), in which ancestral marine fish have repeatedly adapted to freshwater across the northern hemisphere. By comparing the threespine and ninespine stickleback (Pungitius pungitius) genomes to a de novo assembly of the fourspine stickleback (Apeltes quadracus) and an outgroup species, we find two chromosomal fusion events involving the same chromosomes have occurred independently in the threespine and ninespine stickleback lineages. On the fused chromosomes in threespine stickleback, we find an enrichment of quantitative trait loci underlying traits that contribute to marine versus freshwater adaptation. By comparing whole-genome sequences of freshwater and marine threespine stickleback populations, we also find an enrichment of regions under divergent selection on these two fused chromosomes. There is elevated genetic diversity within regions under selection in the freshwater population, consistent with a simulation study showing that gene flow can increase diversity in genomic regions associated with local adaptation and our demographic models showing gene flow between the marine and freshwater populations. Integrating our results with previous studies, we propose that these fusions created regions of low recombination that enabled the formation of adaptative clusters, thereby facilitating freshwater adaptation in the face of recurrent gene flow between marine and freshwater threespine sticklebacks.


Subject(s)
Smegmamorpha , Acclimatization/genetics , Adaptation, Physiological/genetics , Alleles , Animals , Chromosomes/genetics , Smegmamorpha/genetics
18.
Philos Trans R Soc Lond B Biol Sci ; 376(1833): 20200097, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34304593

ABSTRACT

Until recently, the field of sex chromosome evolution has been dominated by the canonical unidirectional scenario, first developed by Muller in 1918. This model postulates that sex chromosomes emerge from autosomes by acquiring a sex-determining locus. Recombination reduction then expands outwards from this locus, to maintain its linkage with sexually antagonistic/advantageous alleles, resulting in Y or W degeneration and potentially culminating in their disappearance. Based mostly on empirical vertebrate research, we challenge and expand each conceptual step of this canonical model and present observations by numerous experts in two parts of a theme issue of Phil. Trans. R. Soc. B. We suggest that greater theoretical and empirical insights into the events at the origins of sex-determining genes (rewiring of the gonadal differentiation networks), and a better understanding of the evolutionary forces responsible for recombination suppression are required. Among others, crucial questions are: Why do sex chromosome differentiation rates and the evolution of gene dose regulatory mechanisms between male versus female heterogametic systems not follow earlier theory? Why do several lineages not have sex chromosomes? And: What are the consequences of the presence of (differentiated) sex chromosomes for individual fitness, evolvability, hybridization and diversification? We conclude that the classical scenario appears too reductionistic. Instead of being unidirectional, we show that sex chromosome evolution is more complex than previously anticipated and principally forms networks, interconnected to potentially endless outcomes with restarts, deletions and additions of new genomic material. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.


Subject(s)
Biological Evolution , Sex Chromosomes/genetics , Sex Determination Processes , Vertebrates/genetics , Animals , Vertebrates/growth & development
19.
Mol Biol Evol ; 38(10): 4403-4418, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34117766

ABSTRACT

How consistent are the evolutionary trajectories of sex chromosomes shortly after they form? Insights into the evolution of recombination, differentiation, and degeneration can be provided by comparing closely related species with homologous sex chromosomes. The sex chromosomes of the threespine stickleback (Gasterosteus aculeatus) and its sister species, the Japan Sea stickleback (G. nipponicus), have been well characterized. Little is known, however, about the sex chromosomes of their congener, the blackspotted stickleback (G. wheatlandi). We used pedigrees to obtain experimentally phased whole genome sequences from blackspotted stickleback X and Y chromosomes. Using multispecies gene trees and analysis of shared duplications, we demonstrate that Chromosome 19 is the ancestral sex chromosome and that its oldest stratum evolved in the common ancestor of the genus. After the blackspotted lineage diverged, its sex chromosomes experienced independent and more extensive recombination suppression, greater X-Y differentiation, and a much higher rate of Y degeneration than the other two species. These patterns may result from a smaller effective population size in the blackspotted stickleback. A recent fusion between the ancestral blackspotted stickleback Y chromosome and Chromosome 12, which produced a neo-X and neo-Y, may have been favored by the very small size of the recombining region on the ancestral sex chromosome. We identify six strata on the ancestral and neo-sex chromosomes where recombination between the X and Y ceased at different times. These results confirm that sex chromosomes can evolve large differences within and between species over short evolutionary timescales.


Subject(s)
Smegmamorpha , Animals , Evolution, Molecular , Recombination, Genetic , Sex Chromosomes/genetics , Smegmamorpha/genetics , Y Chromosome/genetics
20.
Evol Lett ; 4(4): 282-301, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32774879

ABSTRACT

Genomic mapping of the loci associated with phenotypic evolution has revealed genomic "hotspots," or regions of the genome that control multiple phenotypic traits. This clustering of loci has important implications for the speed and maintenance of adaptation and could be due to pleiotropic effects of a single mutation or tight genetic linkage of multiple causative mutations affecting different traits. The threespine stickleback (Gasterosteus aculeatus) is a powerful model for the study of adaptive evolution because the marine ecotype has repeatedly adapted to freshwater environments across the northern hemisphere in the last 12,000 years. Freshwater ecotypes have repeatedly fixed a 16 kilobase haplotype on chromosome IV that contains Ectodysplasin (Eda), a gene known to affect multiple traits, including defensive armor plates, lateral line sensory hair cells, and schooling behavior. Many additional traits have previously been mapped to a larger region of chromosome IV that encompasses the Eda freshwater haplotype. To identify which of these traits specifically map to this adaptive haplotype, we made crosses of rare marine fish heterozygous for the freshwater haplotype in an otherwise marine genetic background. Further, we performed fine-scale association mapping in a fully interbreeding, polymorphic population of freshwater stickleback to disentangle the effects of pleiotropy and linkage on the phenotypes affected by this haplotype. Although we find evidence that linked mutations have small effects on a few phenotypes, a small 1.4-kb region within the first intron of Eda has large effects on three phenotypic traits: lateral plate count, and both the number and patterning of the posterior lateral line neuromasts. Thus, the Eda haplotype is a hotspot of adaptation in stickleback due to both a small, pleiotropic region affecting multiple traits as well as multiple linked mutations affecting additional traits.

SELECTION OF CITATIONS
SEARCH DETAIL
...