Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38591383

ABSTRACT

Poly(butylene adipate-co-terephthalate) (PBAT) is widely used for production of biodegradable films due to its high elongation, excellent flexibility, and good processability properties. An effective way to develop more accessible PBAT-based bioplastics for wide application in packaging is blending of PBAT with thermoplastic starch (TPS) since PBAT is costly with prices approximately double or even triple the prices of traditional plastics like polyethylene. This study is focused on investigating the influence of TPS/PBAT blend ratio and montmorillonite (MMT) content on the physical and mechanical properties and molecular mobility of TPS-MMT/PBAT nanocomposites. Obtained TPS-MMT/PBAT nanocomposites through the melt blending process were characterized using tensile testing, dynamic mechanical thermal analysis (DMTA), and X-ray diffraction (XRD), as well as solid-state 1H and 13C NMR spectroscopy. Mechanical properties demonstrated that the addition of TPS to PBAT leads to a substantial decrease in the tensile strength as well as in the elongation at break, while Young's modulus is rising substantially, while the effect of the MMT addition is almost negligible on the tensile stress of the blends. DMTA results confirmed the formation of TPS domains in the PBAT matrix. With increasing TPS content, mobility of starch-rich regions of TPS domains slightly increases. However, molecular mobility in glycerol-rich regions of TPS domains in the blends was slightly restricted. Moreover, the data obtained from 13C CP/MAS NMR spectra indicated that the presence of TPS in the sample decreases the mobility of the PBAT chains, mainly those located at the TPS/PBAT interfaces.

2.
Int J Biol Macromol ; 253(Pt 4): 126911, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37716657

ABSTRACT

Thermoplastic starch-based nanocomposites with varying glycerol content and montmorillonite as a nanofiller were studied using dynamic-mechanical analysis (DMA), X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) during one-year storage. DMA results showed that starch-rich and glycerol-rich domains were present in the samples and during storage for up to one year the content of the amorphous phase decreased and molecular mobility changed. 13C NMR and XRD measurements confirmed that ordered structures were formed during storage and its content was larger for samples with higher glycerol content and increased with the storage time. The data obtained from deconvolutions of 1H broad line NMR spectra indicate increased overall molecular mobility in the samples up to four months of storage, while after nine months the trends were opposite. Lower free water content compared to the total water content in the samples determined according to deconvoluted 1H MAS (magic-angle spinning) NMR spectra indicated that a part of water molecules was immobilized in the ordered structures.


Subject(s)
Nanocomposites , Starch , Starch/chemistry , Glycerol/chemistry , Nanocomposites/chemistry , Water
3.
Materials (Basel) ; 16(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36769907

ABSTRACT

Thermoplastic starch (TPS) consisting of corn starch and glycerol as a plasticizer, and TPS-montmorillonite (MMT) nanocomposite were stored at room temperature in the air with relative humidities (RH) of 11, 55 and 85% for seven weeks. Mechanical testing and dynamic mechanical thermal analysis (DMTA) were performed to detect changes in their mechanical properties. Solid-state NMR spectroscopy monitoring the changes in molecular mobility in the samples provided an insight into relations between mechanical properties and local structure. The results of mechanical testing indicated that the addition of MMT results in the increase in the tensile strength and Young's modulus while elongation at break decreased, indicating the reinforcing effect of MMT. DMTA experiments revealed a decrease in glass transition temperature of starch-rich phase below room temperature for samples stored at higher RH (55 and 85%). This indicates that absorbed water molecules had additional plasticizing effect on starch resulting in higher mobility of starch chain segments. Recrystallization in these samples was deduced from the shape of cross-polarization magic-angle spinning 13C NMR spectra. The shape of broad-line 1H NMR spectra reflected changes in molecular mobility in the studied samples during seven weeks of storage and revealed that a high amount of water molecules impacts the starch intermolecular hydrogen bond density.

4.
Materials (Basel) ; 17(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38203924

ABSTRACT

This study compares the effect of sulfur and dicumyl peroxide (DCP) vulcanizing systems on the physical and mechanical properties of rubber compounds based on acrylonitrile butadiene rubber (NBR). NBR compounds cured by different amounts of DCP and NBR vulcanizates filled with various concentrations of carbon black (CB) and a constant amount of sulfur or DCP were prepared. The vulcanizates were characterized by tensile testing, dynamic mechanical thermal analysis (DMTA), and cross-link density determination. The tensile strength and Young's modulus were found to increase with the rising amount of DCP and CB, while elongation at break decreased. The samples vulcanized by the sulfur system and filled with CB show a substantial increase in tensile strength from 13.1 to 21.2 MPa. Higher storage modulus and glass transition temperature were observed with the increase in the amount of peroxide and filler, and consequently, the increase in cross-link density, indicating rigidity increase and lower molecular mobility. The changes in the physical and mechanical properties of the NBR vulcanizates were in correlation with the changes in solvent uptake and cross-link density.

5.
Polymers (Basel) ; 14(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36235990

ABSTRACT

Ethylene-propylene-diene monomer (EPDM)-based composites including four different types of graphene nanoplatelets (GnPs) were prepared to evaluate the size effects of GnPs in terms of both specific surface area and lateral size on the morphological, mechanical, and viscoelastic properties, swelling ratio, crosslink density, and oxygen permeability. EPDM-based hybrid composites with GnPs and carbon black (CB) fillers were prepared, with the concentrations of 20 and 50 phr of CB and GnPs up to 7 phr. All samples were prepared using the melt mixing method, followed by compression molding. The specific surface area of GnPs is a more important key factor for mechanical and viscoelastic properties than its lateral size. The presence of GnPs leads to a decrease in the swelling ratio and oxygen permeability of the matrix while an increase in the crosslinking density. For a given specific surface area of GnPs (170 m2/g) and the same thickness (5 nm), the optimum lateral size for mechanical properties, swelling ratio, and crosslinking density is about 30 µm. There is a distinct synergic effect on the mentioned properties when hybrid fillers are used. For hybrid composites, the optimum total and each filler concentration are found to be important for achieving the best performance in terms of mechanical properties, swelling ratio, and crosslink density.

6.
Polymers (Basel) ; 14(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36080717

ABSTRACT

Studies addressing electroconductive composites based on rubber have attracted great interest for many engineering applications. To contribute to obtaining useful materials with reproducible behavior, this study focused on understanding the mechanism of conductivity changes during mechanical deformation for rubber composites based on styrene-butadiene rubber (SBR) or ethylene-propylene-diene terpolymer (EPDM) vulcanized for various times. The composites were characterized by static electrical conductivity, tensile testing, dynamic mechanical thermal analysis (DMTA), and crosslink density measurements. The tensile strength and Young's modulus were found to increase significantly with rising vulcanization time. Higher static conductivity values of the composites were observed with the increase in vulcanization time. The most important aspect of this investigation consisted in the electrical current measurement online with recording the stress-strain curves, revealing the details of the uniaxial cyclic deformation effect on changes in the structure of conductive pathways indirectly. The electrical conductivity during five runs of repeated cyclic mechanical deformations for SBR composites increased permanently, although not linearly, whereas EPDM composites showed a slight increase or at least a nearly constant current, indicating healing of minor defects in the conductive pathways or the formation of new conductive pathways.

7.
Polymers (Basel) ; 13(21)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34771374

ABSTRACT

Conductive polymer composites (CPC) from renewable resources exhibit many interesting characteristics due to their biodegradability and conductivity changes under mechanical, thermal, chemical, or electrical stress. This study is focused on investigating the physical properties of electroconductive thermoplastic starch (TPS)-based composites and changes in electroconductive paths during cyclic deformation. TPS-based composites filled with various carbon black (CB) contents were prepared through melt processing. The electrical conductivity and physicochemical properties of TPS-CB composites, including mechanical properties and rheological behavior, were evaluated. With increasing CB content, the tensile strength and Young's modulus were found to increase substantially. We found a percolation threshold for the CB loading of approximately 5.5 wt% based on the rheology and electrical conductivity. To observe the changing structure of the conductive CB paths during cyclic deformation, both the electrical conductivity and mechanical properties were recorded in parallel using online measurements. Moreover, the instant electrical conductivity measured online during mechanical deformation of the materials was taken as the parameter indirectly describing the structure of the conductive CB network. The electrical conductivity was found to increase during five runs of repeated cyclic mechanical deformations to constant deformation below strain at break, indicating good recovery of conductive paths and their new formation.

8.
Carbohydr Polym ; 269: 118250, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34294287

ABSTRACT

This study is focused on enhancing the stability of mechanical and chemical properties of thermoplastic starch (TPS) by dual crosslinking strategy through melt processing conditions. The dually crosslinked TPS was prepared by in situ reaction of starch, glycerol, and epichlorohydrin (ECH), resulting in both noncovalent and covalent bond formation. The TPS was characterized by tensile testing, dynamic mechanical analysis (DMTA), rheology, and solubility in water. A substantial increase in tensile strength, Young's modulus, insoluble portion, and stability in water for dually crosslinked TPS was observed in comparison with conventional TPS. The rheology results indicated that the ECH induced the formation of 3D networks and significantly limited the chain mobility of the melted TPS, resulting in an extended relaxation process, which was also verified by DMTA. The suggested strategy avoids any chemical modification pretreatment of starch for introducing covalent bonds into TPS before one-step mixing using the melt processing technique.

SELECTION OF CITATIONS
SEARCH DETAIL
...