Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Mater Au ; 4(2): 214-223, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38496046

ABSTRACT

This study presents a pioneering semiconductor-catalyst core-shell architecture designed to enhance photocatalytic water oxidation activity significantly. This innovative assembly involves the in situ deposition of CoFe Prussian blue analogue (PBA) particles onto SrTiO3 (STO) and blue SrTiO3 (bSTO) nanocubes, effectively establishing a robust p-n junction, as demonstrated by Mott-Schottky analysis. Of notable significance, the STO/PB core-shell catalyst displayed remarkable photocatalytic performance, achieving an oxygen evolution rate of 129.6 µmol g-1 h-1, with stability over an extended 9-h in the presence of S2O82- as an electron scavenger. Thorough characterization unequivocally verified the precise alignment of the band energies within the STO/PB core-shell assembly. Our research underscores the critical role of tailored semiconductor-catalyst interfaces in advancing the realm of photocatalysis and its broader applications in renewable energy technologies.

2.
ACS Appl Mater Interfaces ; 16(8): 10078-10092, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38374586

ABSTRACT

Hydrogen shows great promise as a carbon-neutral energy carrier that can significantly mitigate global energy challenges, offering a sustainable solution. Exploring catalysts that are highly efficient, cost-effective, and stable for the hydrogen evolution reaction (HER) holds crucial importance. For this, metal-organic framework (MOF) materials have demonstrated extensive applicability as either a heterogeneous catalyst or catalyst precursor. Herein, a nanostructured interface between NiMo/CuO@C derived from Cu-MOF was designed and developed on nickel foam (NF) as a competent HER electrocatalyst in alkaline media. The catalyst exhibited a low overpotential of 85 mV at 10 mA cm-2 that rivals that of Pt/C (83 mV @ 10 mA cm-2). Moreover, the catalyst's durability was measured through chronopotentiometry at a constant current density of -30, -100, and -200 mA cm-2 for 50 h each in 1.0 M KOH. Such enhanced electrocatalytic performance could be ascribed to the presence of highly conductive C and Cu species, the facilitated electron transfer between the components because of the nanostructured interface, and abundant active sites as a result of multiple oxidation states. The existence of an ionized oxygen vacancy (Ov) signal was confirmed in all heat-treated samples through electron paramagnetic resonance (EPR) analysis. This revelation sheds light on the entrapment of electrons in various environments, primarily associated with the underlying defect structures, particularly vacancies. These trapped electrons play a crucial role in augmenting electron conductivity, thereby contributing to an elevated HER performance.

3.
ACS Mater Au ; 3(2): 143-163, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-38089730

ABSTRACT

The security of future energy, hydrogen, is subject to designing high-performance, stable, and low-cost electrocatalysts for hydrogen and oxygen evolution reactions (HERs and OERs), for the realization of efficient overall water splitting. Two-dimensional (2D) metal-organic frameworks (MOFs) introduce a large family of materials with versatile chemical and structural features for a variety of applications, such as supercapacitors, gas storage, and water splitting. Herein, a series of nanocomposites based on NCM/Ni-BDC@NF (N=Ni, C=Co, M:F=Fe, C=Cu, and Z=Zn, BDC: benzene dicarboxylic acid, NF: nickel foam) were directly developed on NF using a facile yet scalable solvothermal method. After coupling, the electronic structure of metallic atoms was well-modulated. Based on the XPS results, for the NCF/Ni-BDC, cationic atoms shifted to higher oxidation states, favorable for the OER. Conversely, for the NCZ/Ni-BDC and NCC/Ni-BDC nanocomposites, cationic atoms shifted to lower oxidation states, advantageous for the HER. The as-prepared NCF/Ni-BDC demonstrated prominent OER performance, requiring only 1.35 and 1.68 V versus a reversible hydrogen electrode to afford 10 and 50 mA cm-2 current densities, respectively. On the cathodic side, NCZ/Ni-BDC exhibited the best HER activity with an overpotential of 170 and 350 mV to generate 10 and 50 mA cm-2, respectively, under 1.0 M KOH medium. In a two-electrode alkaline electrolyzer, the assembled NCZ/Ni-BDC (cathode) ∥ NCF/Ni-BDC (anode) couple demanded a cell voltage of only 1.58 V to produce 10 mA cm-2. The stability of NCF/Ni-BDC toward OER was also exemplary, experiencing a continuous operation at 10, 20, and 50 mA cm-2 for nearly 45 h. Surprisingly, the overpotential after OER stability at 50 mA cm-2 dropped drastically from 450 to 200 mV. Finally, the faradaic efficiencies for the overall water splitting revealed the respective values of 100 and 85% for the H2 and O2 production at a constant current density of 20 mA cm-2.

4.
ACS Omega ; 6(48): 33024-33032, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34901654

ABSTRACT

Enormous efforts have been dedicated to engineering low-cost and efficient electrocatalysts for both hydrogen evolution and oxygen evolution reactions (HER and OER, respectively). For this, the current contribution reports the successful synthesis of binary/ternary metal ferrites (Co x Ni1-x Ferrite; x = 0.0, 0.1, 0.3, 0.5, 0.7, and 1.0) by a simple one-step microwave technique and subsequently discusses its chemical and electrochemical properties. The X-ray diffraction analysis substantiated the phase purity of the as-obtained catalysts with various compositions. Additionally, the morphology of the nanoparticles was identified via transmission electron microscopy. Further, the vibrating sample magnetometer justified the ferromagnetic character of the as-prepared products. The electrochemical measurements revealed that the as-prepared materials required the overpotentials of 422-600 and 419-467 mV for HER and OER, respectively, to afford current densities of 10 mA cm-2. In the general sense, Ni cation substitution with Co influenced favorably toward both HER and OER. Among all synthesized electrocatalysts, Co0.9Ni0.1Ferrite displayed the highest performance in terms of OER in 1 M KOH solution, which is related to the synergistic effect of multiple parameters including the optimal substitution amount of Co, the highest Brunauer-Emmett-Teller surface area, the smallest particle size among all samples (26.71 nm), and the lowest charge transfer resistance. The successful synthesis of ternary ferrites carried out for the first time via a microwave-assisted auto-combustion route opens up a new path for their applications in renewable energy technologies.

5.
Inorg Chem ; 60(24): 19457-19466, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34855373

ABSTRACT

Design and development of efficient, economical, and durable electrocatalysts for oxygen evolution reaction (OER) are of key importance for the realization of electrocatalytic water splitting. To date, VB2 and its derivatives have not been considered as electrocatalysts for water oxidation. Herein, we developed a series of electrocatalysts with a formal composition of V1-xCoxB2 (x = 0, 0.05, 0.1, and 0.2) and employed them in an oxygen-evolving reaction. The incorporation of Co into the VB2 structure caused a dramatic transformation in the morphology, resulting in a super low overpotential of 200 mV at 10 mA cm-2 for V0.9Co0.1B2 and displaying much greater performance compared to the noble-metal catalyst RuO2 (290 mV). The longevity of the best-performing sample was assessed through the exposure to the current density of 10 mA cm-2, showing relative durability after 12 h under 1 M KOH conditions. The Faradaic efficiency tests corroborated the initiation of OER at 1.45 V (vs RHE) and suggested a potential region of 1.50-1.55 V (vs RHE) as the practical OER region. The facile electron transfer between metal(s)-metalloid, high specific surface area, and availability of active oxy-hydroxy species on the surface were identified as the major contributors to this superior OER performance.

6.
Turk J Chem ; 45(2): 323-332, 2021.
Article in English | MEDLINE | ID: mdl-34104047

ABSTRACT

Herein, titanium (Ti3+) self-doped strontium titanate (SrTiO3), so-called blue SrTiO3, with a bandgap of 2.6 eV and favorable photocatalytic characteristics was fabricated through a facile and effective method. For electrochemical investigations, the electrophoretic deposition was applied to produce SrTiO3 thin films on (fluorine-doped tin oxide) FTO conductive substrates. The electrophoretic voltage of 20 V and a process duration of 10 min were optimized to reach transparent and uniform coatings on FTO. The blue SrTiO3 reveals lower resistance (charge transfer resistance of 6.38 Ω cm-2) and higher electron mobility (current density value of 0.25 mA cm-2) compared to a pure SrTiO3 electrode. These findings may provide new insights for developing high-performance visible light photocatalysts.

7.
Sci Rep ; 11(1): 3337, 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33558628

ABSTRACT

Growing environmental problems along with the galloping rate of population growth have raised an unprecedented challenge to look for an ever-lasting alternative source of energy for fossil fuels. The eternal quest for sustainable energy production strategies has culminated in the electrocatalytic water splitting process integrated with renewable energy resources. The successful accomplishment of this process is thoroughly subject to competent, earth-abundant, and low-cost electrocatalysts to drive the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), preferably, in the same electrolyte. The present contribution has been dedicated to studying the synthesis, characterization, and electrochemical properties of newfangled electrocatalysts with the formal composition of Mg1-xTMxB2 (x = 0.025, 0.05, and 0.1; TM (transition metal) = Fe and Co) primarily in HER as well as OER under 1 M KOH medium. The electrochemical tests revealed that among all the metal-doped MgB2 catalysts, Mg0.95Co0.05B2 has the best HER performance showing an overpotential of 470 mV at - 10 mA cm-2 and a Tafel slope of 80 mV dec-1 on account of its high purity and fast electron transport. Further investigation shed some light on the fact that Fe concentration and overpotential for HER have adverse relation meaning that the highest amount of Fe doping (x = 0.1) displayed the lowest overpotential. This contribution introduces not only highly competent electrocatalysts composed of low-cost precursors for the water-splitting process but also a facile scalable method for the assembly of highly porous electrodes paving the way for further stunning developments in the field.

8.
Turk J Chem ; 44(6): 1642-1654, 2020.
Article in English | MEDLINE | ID: mdl-33488259

ABSTRACT

In the past years there has been a great interest in self-doped TiO2 nanotubes (blue TiO2 nanotubes) compared to undoped ones owing to their high carrier density and conductivity. In this study, blue TiO2 nanotubes are investigated as photoanode materials for photoelectrochemical water splitting. Blue TiO2 nanotubes were fabricated with enhanced photoresponse behavior through electrochemical cathodic polarization on undoped and annealed TiO2 nanotubes. The annealing temperature of undoped TiO2 nanotubes was tuned before cathodic polarization, revealing that annealing at 500 °C improved the photoresponse of the nanotubes significantly. Further optimization of the blue TiO2 nanotubes was achieved by adjusting the cathodic polarization parameters. Blue TiO2 nanotubes obtained at the potential of -1.4 V (vs. SCE) with a duration of 10 min exhibited twice more photocurrent response (0.39 mA cm-2) compared to the undoped TiO2 nanotube arrays (0.19 mA cm-2). Oxygen vacancies formed through the cathodic polarization decreased charge recombination and enhanced charge transfer rate; therefore, a high photoelectrochemical activity under visible light irradiation could be achieved.

SELECTION OF CITATIONS
SEARCH DETAIL
...