Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biointerphases ; 18(2): 021003, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36944533

ABSTRACT

Polyethersulfone (PES) membranes are widely used in medical devices, especially intravascular devices such as intravascular bioartificial pancreases. In the current work, the pure PES and PES-pyrolytic carbon (PyC) composite membranes were synthesized and permeability studies were conducted. In addition, the cytocompatibility and hemocompatibility of the pure PES and PES-PyC membranes were investigated. These materials were characterized using peripheral blood mononuclear cell (PBMC) activation, platelet activation, platelet adhesion, ß-cell viability and proliferation, and ß-cell response to hyperglycemia. The results showed that platelet activation decreased from 87.3% to 27.8%. Any alteration in the morphology of sticking platelets was prevented, and the number of attached platelets decreased by modification with PyC. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay corroborated that PBMC activation was encouraged by the PyC-modified PES membrane surface. It can be concluded that PES-modified membranes show higher hemocompatibility than pure PES membranes. ß-cells cultured on all the three membranes displayed a lower rate of proliferation although the cells on the PES-PyC (0.1 wt. %) membrane indicated a slightly higher viability and proliferation than those on the pure PES and PES-PyC (0.05 wt. %) membranes. It shows that the PES-PyC (0.1 wt. %) membrane possesses superior cytocompatibility over the other membranes.


Subject(s)
Biocompatible Materials , Pancreas, Artificial , Biocompatible Materials/pharmacology , Leukocytes, Mononuclear , Membranes, Artificial
2.
Sci Rep ; 12(1): 6260, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35428823

ABSTRACT

Hydrogen sulfide (H2S) is a super toxic substance that produces SOx gases when combusted. Therefore, it should be removed from gas streams. Biodesulfurization is one of the developing methods for removing sulfide. Gas biodesulfurization must be accelerated to be competitive with chemical processes. This process has two sides: biotic and abiotic sides. To increase the rate of sulfide removal, this substance should be given to the bacteria in the maximum amount (Max. - RHS B). Therefore, it is necessary to minimize the rate of adverse abiotic reactions of sulfide (Min. - RHS A). Minimizing the sulfide reaction with biosulfur and oxygen and thiosulfate generation (Min. - RHS thio2) was assessed in de-microbized medium. It was concluded that the pH should be kept as low as possible. The kinetics of thiosulfate formation from sulfide oxidation (- RHS thio1) are strongly dependent on the sulfide concentration, and to minimize this reaction rate, sulfide should be gently injected into the culture. To minimize sulfide reduction to hydrogen sulfide (Min. - RHS rev), the pH should be kept as high as possible. Using the Design Expert v.13, a model was driven for the abiotic side to obtain optimum condition. The pH value was found to be 8.2 and the sulfide concentration to 2.5E-05 M. Thioalkalivibrio versutus cultivation under identified abiotic conditions resulted in biological removal of sulfide up to 1.5 g/h. The culture was not able to remove 2 g/h input sulfide, and to increase this, the biotic side should be studied.


Subject(s)
Hydrogen Sulfide , Ectothiorhodospiraceae , Gases , Oxidation-Reduction , Sulfides , Thiosulfates
3.
AMB Express ; 11(1): 131, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34550485

ABSTRACT

Biosurfactants are amphiphilic molecules composed of a hydrophilic and hydrophobic moiety and had the ability to penetrate into different phases to reduce the surface tension. This features caused to oil recovery, lubrication and facilities of crude oil in pipeline. In current research Biosurfactant-producing strain was isolated from the storage tanks of the Isfahan Oil Refining Company in Iran, and screened by oil expansion test, droplet collapse, and surface tension reduction measurement. Hydrocarbon recovery from crude oil sludge was measured under constant conditions. The effect of factoring biosource lubrication on crude oil in pipelines was investigated in vitro. Also, the optimization of biosurfactant production in different conditions was measured as a single factor and using Response Surface Method (RSM). The best biosurfactant-producing bacterium was identified as Kocuria rosea ABR6, and its sequence was registered in the gene bank with access number of MK100469. Chemical analysis proved that the produced biosurfactant was a lipopeptide. 7% of crude oil was recovered from petroleum sludge by biosurfactant obtained from Kocuria rosea ABR6. Also, the speed of crude oil transfer in pipelines was upgraded as it could be said that for a certain distance the transfer time reduced from 64 to 35 s. The highest biosurfactant production was measured at pH 9, aeration rate of 120 rpm and 96 h after incubation. The use of biosurfactants produced by Kocuria rosea ABR6 is recommended to remove oil sludge and lubricate oil in pipelines recommended in the oil industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...