Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Cell Biol ; 26(9): 1571-1584, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39117797

ABSTRACT

Caloric restriction and intermittent fasting prolong the lifespan and healthspan of model organisms and improve human health. The natural polyamine spermidine has been similarly linked to autophagy enhancement, geroprotection and reduced incidence of cardiovascular and neurodegenerative diseases across species borders. Here, we asked whether the cellular and physiological consequences of caloric restriction and fasting depend on polyamine metabolism. We report that spermidine levels increased upon distinct regimens of fasting or caloric restriction in yeast, flies, mice and human volunteers. Genetic or pharmacological blockade of endogenous spermidine synthesis reduced fasting-induced autophagy in yeast, nematodes and human cells. Furthermore, perturbing the polyamine pathway in vivo abrogated the lifespan- and healthspan-extending effects, as well as the cardioprotective and anti-arthritic consequences of fasting. Mechanistically, spermidine mediated these effects via autophagy induction and hypusination of the translation regulator eIF5A. In summary, the polyamine-hypusination axis emerges as a phylogenetically conserved metabolic control hub for fasting-mediated autophagy enhancement and longevity.


Subject(s)
Autophagy , Caenorhabditis elegans , Caloric Restriction , Fasting , Longevity , Spermidine , Autophagy/drug effects , Longevity/drug effects , Spermidine/metabolism , Spermidine/pharmacology , Animals , Humans , Caenorhabditis elegans/metabolism , Peptide Initiation Factors/metabolism , Peptide Initiation Factors/genetics , Eukaryotic Translation Initiation Factor 5A , Drosophila melanogaster/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Mice , Male , Mice, Inbred C57BL
3.
Cell Metab ; 30(3): 462-476.e6, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31471173

ABSTRACT

Caloric restriction and intermittent fasting are known to prolong life- and healthspan in model organisms, while their effects on humans are less well studied. In a randomized controlled trial study (ClinicalTrials.gov identifier: NCT02673515), we show that 4 weeks of strict alternate day fasting (ADF) improved markers of general health in healthy, middle-aged humans while causing a 37% calorie reduction on average. No adverse effects occurred even after >6 months. ADF improved cardiovascular markers, reduced fat mass (particularly the trunk fat), improving the fat-to-lean ratio, and increased ß-hydroxybutyrate, even on non-fasting days. On fasting days, the pro-aging amino-acid methionine, among others, was periodically depleted, while polyunsaturated fatty acids were elevated. We found reduced levels sICAM-1 (an age-associated inflammatory marker), low-density lipoprotein, and the metabolic regulator triiodothyronine after long-term ADF. These results shed light on the physiological impact of ADF and supports its safety. ADF could eventually become a clinically relevant intervention.


Subject(s)
Aging/blood , Fasting/adverse effects , Fasting/blood , Healthy Aging/blood , 3-Hydroxybutyric Acid/blood , Adult , Biomarkers/blood , Body Mass Index , Caloric Restriction/adverse effects , Energy Intake/physiology , Fatty Acids, Unsaturated/blood , Female , Healthy Volunteers , Humans , Intercellular Adhesion Molecule-1/blood , Lipoproteins, LDL/blood , Male , Middle Aged , Pilot Projects , Prospective Studies , Triiodothyronine/blood , Weight Loss
SELECTION OF CITATIONS
SEARCH DETAIL