Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 194(1): 168-189, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37862163

ABSTRACT

Oat (Avena sativa) is a cereal crop whose grains are rich in (1,3;1,4)-ß-D-glucan (mixed-linkage glucan or MLG), a soluble dietary fiber. In our study, we analyzed oat endosperm development in 2 Canadian varieties with differing MLG content and nutritional value. We confirmed that oat undergoes a nuclear type of endosperm development but with a shorter cellularization phase than barley (Hordeum vulgare). Callose and cellulose were the first polysaccharides to be detected in the early anticlinal cell walls at 11 days postemergence (DPE) of the panicle. Other polysaccharides such as heteromannan and homogalacturonan were deposited early in cellularization around 12 DPE after the first periclinal walls are laid down. In contrast to barley, heteroxylan deposition coincided with completion of cellularization and was detected from 14 DPE but was only detectable after demasking. Notably, MLG was the last polysaccharide to be laid down at 18 DPE within the differentiation phase, rather than during cellularization. In addition, differences in the spatiotemporal patterning of MLG were also observed between the 2 varieties. The lower MLG-containing cultivar AC Morgan (3.5% w/w groats) was marked by the presence of a discontinuous pattern of MLG labeling, while labeling in the same walls in CDC Morrison (5.6% w/w groats) was mostly even and continuous. RNA-sequencing analysis revealed higher transcript levels of multiple MLG biosynthetic cellulose synthase-like F (CSLF) and CSLH genes during grain development in CDC Morrison compared with AC Morgan that likely contributes to the increased abundance of MLG at maturity in CDC Morrison. CDC Morrison was also observed to have smaller endosperm cells with thicker walls than AC Morgan from cellularization onwards, suggesting the processes controlling cell size and shape are established early in development. This study has highlighted that the molecular processes influencing MLG content and deposition are more complex than previously imagined.


Subject(s)
Endosperm , Hordeum , Endosperm/metabolism , Avena , Edible Grain/genetics , Edible Grain/metabolism , Canada , Polysaccharides/metabolism , Glucans/metabolism , Hordeum/genetics , Hordeum/metabolism , Cell Wall/metabolism
2.
Nucleic Acids Res ; 51(15): 7798-7819, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37351575

ABSTRACT

Seeds are a vital source of calories for humans and a unique stage in the life cycle of flowering plants. During seed germination, the embryo undergoes major developmental transitions to become a seedling. Studying gene expression in individual seed cell types has been challenging due to the lack of spatial information or low throughput of existing methods. To overcome these limitations, a spatial transcriptomics workflow was developed for germinating barley grain. This approach enabled high-throughput analysis of spatial gene expression, revealing specific spatial expression patterns of various functional gene categories at a sub-tissue level. This study revealed over 14 000 genes differentially regulated during the first 24 h after imbibition. Individual genes, such as the aquaporin gene family, starch degradation, cell wall modification, transport processes, ribosomal proteins and transcription factors, were found to have specific spatial expression patterns over time. Using spatial autocorrelation algorithms, we identified auxin transport genes that had increasingly focused expression within subdomains of the embryo over time, suggesting their role in establishing the embryo axis. Overall, our study provides an unprecedented spatially resolved cellular map for barley germination and identifies specific functional genomics targets to better understand cellular restricted processes during germination. The data can be viewed at https://spatial.latrobe.edu.au/.


Subject(s)
Hordeum , Gene Expression Profiling , Gene Expression Regulation, Plant , Germination/genetics , Hordeum/genetics , Hordeum/metabolism , Seeds/genetics , Seeds/metabolism , Transcription Factors/metabolism , Transcriptome/genetics
3.
Int J Mol Sci ; 21(20)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066688

ABSTRACT

Soybean (Glycine max) is an important crop providing oil and protein for both human and animal consumption. Knowing which biological processes take place in specific tissues in a temporal manner will enable directed breeding or synthetic approaches to improve seed quantity and quality. We analyzed a genome-wide transcriptome dataset from embryo, endosperm, endothelium, epidermis, hilum, outer and inner integument and suspensor at the global, heart and cotyledon stages of soybean seed development. The tissue specificity of gene expression was greater than stage specificity, and only three genes were differentially expressed in all seed tissues. Tissues had both unique and shared enriched functional categories of tissue-specifically expressed genes associated with them. Strong spatio-temporal correlation in gene expression was identified using weighted gene co-expression network analysis, with the most co-expression occurring in one seed tissue. Transcription factors with distinct spatiotemporal gene expression programs in each seed tissue were identified as candidate regulators of expression within those tissues. Gene ontology (GO) enrichment of orthogroup clusters revealed the conserved functions and unique roles of orthogroups with similar and contrasting expression patterns in transcript abundance between soybean and Arabidopsis during embryo proper and endosperm development. Key regulators in each seed tissue and hub genes connecting those networks were characterized by constructing gene regulatory networks. Our findings provide an important resource for describing the structure and function of individual soybean seed compartments during early seed development.


Subject(s)
Gene Regulatory Networks , Glycine max/genetics , Seeds/genetics , Transcriptome , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Seeds/growth & development , Glycine max/growth & development
4.
J Vis Exp ; (162)2020 08 05.
Article in English | MEDLINE | ID: mdl-32831315

ABSTRACT

The development of a complex multicellular organism is governed by distinct cell types that have different transcriptional profiles. To identify transcriptional regulatory networks that govern developmental processes it is necessary to measure the spatial and temporal gene expression profiles of these individual cell types. Therefore, insight into the spatio-temporal control of gene expression is essential to gain understanding of how biological and developmental processes are regulated. Here, we describe a laser-capture microdissection (LCM) method to isolate small number of cells from three barley embryo organs over a time-course during germination followed by transcript profiling. The method consists of tissue fixation, tissue processing, paraffin embedding, sectioning, LCM and RNA extraction followed by real-time PCR or RNA-seq. This method has enabled us to obtain spatial and temporal profiles of seed organ transcriptomes from varying numbers of cells (tens to hundreds), providing much greater tissue-specificity than typical bulk-tissue analyses. From these data we were able to define and compare transcriptional regulatory networks as well as predict candidate regulatory transcription factors for individual tissues. The method should be applicable to other plant tissues with minimal optimization.


Subject(s)
Gene Expression Profiling/methods , Gene Expression/genetics , Laser Capture Microdissection/methods , Plants/genetics , Sequence Analysis, RNA/methods , Plants/chemistry
6.
Nat Plants ; 5(9): 1002-1011, 2019 09.
Article in English | MEDLINE | ID: mdl-31451795

ABSTRACT

Stomata are microscopic pores found on the surfaces of leaves that act to control CO2 uptake and water loss. By integrating information derived from endogenous signals with cues from the surrounding environment, the guard cells, which surround the pore, 'set' the stomatal aperture to suit the prevailing conditions. Much research has concentrated on understanding the rapid intracellular changes that result in immediate changes to the stomatal aperture. In this study, we look instead at how stomata acclimate to longer timescale variations in their environment. We show that the closure-inducing signals abscisic acid (ABA), increased CO2, decreased relative air humidity and darkness each access a unique gene network made up of clusters (or modules) of common cellular processes. However, within these networks some gene clusters are shared amongst all four stimuli. All stimuli modulate the expression of members of the PYR/PYL/RCAR family of ABA receptors. However, they are modulated differentially in a stimulus-specific manner. Of the six members of the PYR/PYL/RCAR family expressed in guard cells, PYL2 is sufficient for guard cell ABA-induced responses, whereas in the responses to CO2, PYL4 and PYL5 are essential. Overall, our work shows the importance of ABA as a central regulator and integrator of long-term changes in stomatal behaviour, including sensitivity, elicited by external signals. Understanding this architecture may aid in breeding crops with improved water and nutrient efficiency.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/physiology , Intracellular Signaling Peptides and Proteins/genetics , Receptors, Cell Surface/genetics , Signal Transduction/genetics , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Plant Stomata/physiology , Receptors, Cell Surface/metabolism
7.
Proc Natl Acad Sci U S A ; 115(50): E11857-E11863, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30482863

ABSTRACT

The phytohormone abscisic acid (ABA) plays a key role regulating root growth, root system architecture, and root adaptive responses, such as hydrotropism. The molecular and cellular mechanisms that regulate the action of core ABA signaling components in roots are not fully understood. ABA is perceived through receptors from the PYR/PYL/RCAR family and PP2C coreceptors. PYL8/RCAR3 plays a nonredundant role in regulating primary and lateral root growth. Here we demonstrate that ABA specifically stabilizes PYL8 compared with other ABA receptors and induces accumulation of PYL8 in root nuclei. This requires ABA perception by PYL8 and leads to diminished ubiquitination of PYL8 in roots. The ABA agonist quinabactin, which promotes root ABA signaling through dimeric receptors, fails to stabilize the monomeric receptor PYL8. Moreover, a PYL8 mutant unable to bind ABA and inhibit PP2C is not stabilized by the ligand, whereas a PYL85KR mutant is more stable than PYL8 at endogenous ABA concentrations. The PYL8 transcript was detected in the epidermis and stele of the root meristem; however, the PYL8 protein was also detected in adjacent tissues. Expression of PYL8 driven by tissue-specific promoters revealed movement to adjacent tissues. Hence both inter- and intracellular trafficking of PYL8 appears to occur in the root apical meristem. Our findings reveal a non-cell-autonomous mechanism for hormone receptors and help explain the nonredundant role of PYL8-mediated root ABA signaling.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Abscisic Acid/agonists , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Nucleus/metabolism , Genes, Plant , Ligands , Meristem/metabolism , Mutation , Plant Growth Regulators/agonists , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Protein Stability/drug effects , Quinolones/pharmacology , Signal Transduction/drug effects , Sulfonamides/pharmacology , Ubiquitination
8.
Curr Biol ; 27(20): 3183-3190.e4, 2017 Oct 23.
Article in English | MEDLINE | ID: mdl-29033328

ABSTRACT

Abiotic stresses impact negatively on plant growth, profoundly affecting yield and quality of crops. Although much is known about plant responses, very little is understood at the molecular level about the initial sensing of environmental stress. In plants, hypoxia (low oxygen, which occurs during flooding) is directly sensed by the Cys-Arg/N-end rule pathway of ubiquitin-mediated proteolysis, through oxygen-dependent degradation of group VII Ethylene Response Factor transcription factors (ERFVIIs) via amino-terminal (Nt-) cysteine [1, 2]. Using Arabidopsis (Arabidopsis thaliana) and barley (Hordeum vulgare), we show that the pathway regulates plant responses to multiple abiotic stresses. In Arabidopsis, genetic analyses revealed that response to these stresses is controlled by N-end rule regulation of ERFVII function. Oxygen sensing via the Cys-Arg/N-end rule in higher eukaryotes is linked through a single mechanism to nitric oxide (NO) sensing [3, 4]. In plants, the major mechanism of NO synthesis is via NITRATE REDUCTASE (NR), an enzyme of nitrogen assimilation [5]. Here, we identify a negative relationship between NR activity and NO levels and stabilization of an artificial Nt-Cys substrate and ERFVII function in response to environmental changes. Furthermore, we show that ERFVIIs enhance abiotic stress responses via physical and genetic interactions with the chromatin-remodeling ATPase BRAHMA. We propose that plants sense multiple abiotic stresses through the Cys-Arg/N-end rule pathway either directly (via oxygen sensing) or indirectly (via NO sensing downstream of NR activity). This single mechanism can therefore integrate environment and response to enhance plant survival.


Subject(s)
Arabidopsis/physiology , Arginine/metabolism , Cysteine/metabolism , Hordeum/physiology , Plant Proteins/metabolism , Transcription Factors/metabolism , Arabidopsis Proteins/metabolism , Metabolic Networks and Pathways , Stress, Physiological
9.
Plant Cell ; 28(9): 2178-2196, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27577789

ABSTRACT

Abscisic acid (ABA) is an essential hormone for plant development and stress responses. ABA signaling is suppressed by clade A PP2C phosphatases, which function as key repressors of this pathway through inhibiting ABA-activated SnRK2s (SNF1-related protein kinases). Upon ABA perception, the PYR/PYL/RCAR ABA receptors bind to PP2Cs with high affinity and biochemically inhibit their activity. While this mechanism has been extensively studied, how PP2Cs are regulated at the protein level is only starting to be explored. Arabidopsis thaliana RING DOMAIN LIGASE5 (RGLG5) belongs to a five-member E3 ubiquitin ligase family whose target proteins remain unknown. We report that RGLG5, together with RGLG1, releases the PP2C blockade of ABA signaling by mediating PP2CA protein degradation. ABA promotes the interaction of PP2CA with both E3 ligases, which mediate ubiquitination of PP2CA and are required for ABA-dependent PP2CA turnover. Downregulation of RGLG1 and RGLG5 stabilizes endogenous PP2CA and diminishes ABA-mediated responses. Moreover, the reduced response to ABA in germination assays is suppressed in the rglg1 amiR (artificial microRNA)-rglg5 pp2ca-1 triple mutant, supporting a functional link among these loci. Overall, our data indicate that RGLG1 and RGLG5 are important modulators of ABA signaling, and they unveil a mechanism for activation of the ABA pathway by controlling PP2C half-life.

10.
Plant Cell ; 28(9): 2291-2311, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27495812

ABSTRACT

Recently, we described the ubiquitylation of PYL4 and PYR1 by the RING E3 ubiquitin ligase RSL1 at the plasma membrane of Arabidopsis thaliana This suggested that ubiquitylated abscisic acid (ABA) receptors might be targeted to the vacuolar degradation pathway because such ubiquitylation is usually an internalization signal for the endocytic route. Here, we show that FYVE1 (previously termed FREE1), a recently described component of the endosomal sorting complex required for transport (ESCRT) machinery, interacted with RSL1-receptor complexes and recruited PYL4 to endosomal compartments. Although the ESCRT pathway has been assumed to be reserved for integral membrane proteins, we show the involvement of this pathway in the degradation of ABA receptors, which can be associated with membranes but are not integral membrane proteins. Knockdown fyve1 alleles are hypersensitive to ABA, illustrating the biological relevance of the ESCRT pathway for the modulation of ABA signaling. In addition, fyve1 mutants are impaired in the targeting of ABA receptors for vacuolar degradation, leading to increased accumulation of PYL4 and an enhanced response to ABA Pharmacological and genetic approaches revealed a dynamic turnover of ABA receptors from the plasma membrane to the endosomal/vacuolar degradation pathway, which was mediated by FYVE1 and was dependent on RSL1. This process involves clathrin-mediated endocytosis and trafficking of PYL4 through the ESCRT pathway, which helps to regulate the turnover of ABA receptors and attenuate ABA signaling.

11.
Nat Commun ; 7: 11222, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27097556

ABSTRACT

Deciphering the mechanisms directing transcription factors (TFs) to specific genome regions is essential to understand and predict transcriptional regulation. TFs recognize short DNA motifs primarily through their DNA-binding domain. Some TFs also possess an oligomerization domain suspected to potentiate DNA binding but for which the genome-wide influence remains poorly understood. Here we focus on the LEAFY transcription factor, a master regulator of flower development in angiosperms. We have determined the crystal structure of its conserved amino-terminal domain, revealing an unanticipated Sterile Alpha Motif oligomerization domain. We show that this domain is essential to LEAFY floral function. Moreover, combined biochemical and genome-wide assays suggest that oligomerization is required for LEAFY to access regions with low-affinity binding sites or closed chromatin. This finding shows that domains that do not directly contact DNA can nevertheless have a profound impact on the DNA binding landscape of a TF.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/genetics , Flowers/genetics , Gene Expression Regulation, Plant , Genome, Plant , Oryza/genetics , Transcription Factors/chemistry , Amino Acid Sequence , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Binding Sites , Chromatin/chemistry , Chromatin/metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Flowers/growth & development , Flowers/metabolism , Gene Expression , Gene Expression Regulation, Developmental , Models, Molecular , Molecular Sequence Data , Oryza/growth & development , Oryza/metabolism , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
12.
Proc Natl Acad Sci U S A ; 113(3): E396-405, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26719420

ABSTRACT

Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca(2+) are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca(2+) signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca(2+)-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca(2+) sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca(2+)-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Calcium/metabolism , Cell Membrane/metabolism , Protein Multimerization , Signal Transduction , Abscisic Acid/pharmacology , Arabidopsis Proteins/chemistry , Binding Sites , Calorimetry , Cell Membrane/drug effects , Crystallography, X-Ray , Models, Biological , Phenotype , Phospholipids/chemistry , Protein Binding/drug effects , Protein Multimerization/drug effects , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Transport/drug effects , Signal Transduction/drug effects , Solutions , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism
13.
Mol Plant ; 9(1): 136-147, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26499068

ABSTRACT

Optimal response to drought is critical for plant survival and will affect biodiversity and crop performance during climate change. Mitotically heritable epigenetic or dynamic chromatin state changes have been implicated in the plant response to the drought stress hormone abscisic acid (ABA). The Arabidopsis SWI/SNF chromatin-remodeling ATPase BRAHMA (BRM) modulates response to ABA by preventing premature activation of stress response pathways during germination. We show that core ABA signaling pathway components physically interact with BRM and post-translationally modify BRM by phosphorylation/dephosphorylation. Genetic evidence suggests that BRM acts downstream of SnRK2.2/2.3 kinases, and biochemical studies identified phosphorylation sites in the C-terminal region of BRM at SnRK2 target sites that are evolutionarily conserved. Finally, the phosphomimetic BRM(S1760D S1762D) mutant displays ABA hypersensitivity. Prior studies showed that BRM resides at target loci in the ABA pathway in the presence and absence of the stimulus, but is only active in the absence of ABA. Our data suggest that SnRK2-dependent phosphorylation of BRM leads to its inhibition, and PP2CA-mediated dephosphorylation of BRM restores the ability of BRM to repress ABA response. These findings point to the presence of a rapid phosphorylation-based switch to control BRM activity; this property could be potentially harnessed to improve drought tolerance in plants.


Subject(s)
Abscisic Acid/metabolism , Adenosine Triphosphatases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Chromatin/metabolism , Adenosine Triphosphatases/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Protein Phosphatase 2C , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction
14.
Plant Cell ; 26(12): 4802-20, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25465408

ABSTRACT

Membrane-delimited abscisic acid (ABA) signal transduction plays a critical role in early ABA signaling, but the molecular mechanisms linking core signaling components to the plasma membrane are unclear. We show that transient calcium-dependent interactions of PYR/PYL ABA receptors with membranes are mediated through a 10-member family of C2-domain ABA-related (CAR) proteins in Arabidopsis thaliana. Specifically, we found that PYL4 interacted in an ABA-independent manner with CAR1 in both the plasma membrane and nucleus of plant cells. CAR1 belongs to a plant-specific gene family encoding CAR1 to CAR10 proteins, and bimolecular fluorescence complementation and coimmunoprecipitation assays showed that PYL4-CAR1 as well as other PYR/PYL-CAR pairs interacted in plant cells. The crystal structure of CAR4 was solved, which revealed that, in addition to a classical calcium-dependent lipid binding C2 domain, a specific CAR signature is likely responsible for the interaction with PYR/PYL receptors and their recruitment to phospholipid vesicles. This interaction is relevant for PYR/PYL function and ABA signaling, since different car triple mutants affected in CAR1, CAR4, CAR5, and CAR9 genes showed reduced sensitivity to ABA in seedling establishment and root growth assays. In summary, we identified PYR/PYL-interacting partners that mediate a transient Ca(2+)-dependent interaction with phospholipid vesicles, which affects PYR/PYL subcellular localization and positively regulates ABA signaling.


Subject(s)
Abscisic Acid/pharmacology , Arabidopsis Proteins/physiology , Arabidopsis/metabolism , Plant Growth Regulators/pharmacology , Receptors, Cell Surface/physiology , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Models, Molecular , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Signal Transduction
15.
J Exp Bot ; 65(15): 4451-64, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24863435

ABSTRACT

Abscisic acid (ABA) plays a crucial role in the plant's response to both biotic and abiotic stress. Sustainable production of food faces several key challenges, particularly the generation of new varieties with improved water use efficiency and drought tolerance. Different studies have shown the potential applications of Arabidopsis PYR/PYL/RCAR ABA receptors to enhance plant drought resistance. Consequently the functional characterization of orthologous genes in crops holds promise for agriculture. The full set of tomato (Solanum lycopersicum) PYR/PYL/RCAR ABA receptors have been identified here. From the 15 putative tomato ABA receptors, 14 of them could be grouped in three subfamilies that correlated well with corresponding Arabidopsis subfamilies. High levels of expression of PYR/PYL/RCAR genes was found in tomato root, and some genes showed predominant expression in leaf and fruit tissues. Functional characterization of tomato receptors was performed through interaction assays with Arabidopsis and tomato clade A protein phosphatase type 2Cs (PP2Cs) as well as phosphatase inhibition studies. Tomato receptors were able to inhibit the activity of clade A PP2Cs differentially in an ABA-dependent manner, and at least three receptors were sensitive to the ABA agonist quinabactin, which inhibited tomato seed germination. Indeed, the chemical activation of ABA signalling induced by quinabactin was able to activate stress-responsive genes. Both dimeric and monomeric tomato receptors were functional in Arabidopsis plant cells, but only overexpression of monomeric-type receptors conferred enhanced drought resistance. In summary, gene expression analyses, and chemical and transgenic approaches revealed distinct properties of tomato PYR/PYL/RCAR ABA receptors that might have biotechnological implications.


Subject(s)
Abscisic Acid/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Quinolones/metabolism , Solanum lycopersicum/metabolism , Sulfonamides/metabolism , Abscisic Acid/agonists , Adaptation, Physiological , Arabidopsis , Arabidopsis Proteins/metabolism , Carrier Proteins/metabolism , Droughts , Gene Expression Regulation, Plant , Genome, Plant , Intracellular Signaling Peptides and Proteins , Membrane Transport Proteins/metabolism , Phosphoprotein Phosphatases/antagonists & inhibitors , Protein Phosphatase 2C
16.
Plant Physiol ; 161(2): 931-41, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23370718

ABSTRACT

Abscisic acid (ABA) signaling plays a critical role in regulating root growth and root system architecture. ABA-mediated growth promotion and root tropic response under water stress are key responses for plant survival under limiting water conditions. In this work, we have explored the role of Arabidopsis (Arabidopsis thaliana) PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS for root ABA signaling. As a result, we discovered that PYL8 plays a nonredundant role for the regulation of root ABA sensitivity. Unexpectedly, given the multigenic nature and partial functional redundancy observed in the PYR/PYL family, the single pyl8 mutant showed reduced sensitivity to ABA-mediated root growth inhibition. This effect was due to the lack of PYL8-mediated inhibition of several clade A phosphatases type 2C (PP2Cs), since PYL8 interacted in vivo with at least five PP2Cs, namely HYPERSENSITIVE TO ABA1 (HAB1), HAB2, ABA-INSENSITIVE1 (ABI1), ABI2, and PP2CA/ABA-HYPERSENSITIVE GERMINATION3 as revealed by tandem affinity purification and mass spectrometry proteomic approaches. We also discovered that PYR/PYL receptors and clade A PP2Cs are crucial for the hydrotropic response that takes place to guide root growth far from regions with low water potential. Thus, an ABA-hypersensitive pp2c quadruple mutant showed enhanced hydrotropism, whereas an ABA-insensitive sextuple pyr/pyl mutant showed reduced hydrotropic response, indicating that ABA-dependent inhibition of PP2Cs by PYR/PYLs is required for the proper perception of a moisture gradient.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Plant Roots/metabolism , Signal Transduction , Abscisic Acid/pharmacology , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Germination/drug effects , Immunoblotting , Mass Spectrometry , Mutation , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Roots/drug effects , Plant Roots/genetics , Plants, Genetically Modified , Protein Binding , Proteome/genetics , Proteome/metabolism , Seeds/drug effects , Seeds/genetics , Seeds/metabolism , Water/metabolism , Water/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...