Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(3): 031001, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38307055

ABSTRACT

We use explainable neural networks to connect the evolutionary history of dark matter halos with their density profiles. The network captures independent factors of variation in the density profiles within a low-dimensional representation, which we physically interpret using mutual information. Without any prior knowledge of the halos' evolution, the network recovers the known relation between the early time assembly and the inner profile and discovers that the profile beyond the virial radius is described by a single parameter capturing the most recent mass accretion rate. The results illustrate the potential for machine-assisted scientific discovery in complicated astrophysical datasets.

2.
Phys Rev Lett ; 129(5): 059901, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35960592

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.123.031601.

3.
Phys Rev Lett ; 128(17): 171301, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35570432

ABSTRACT

We set the strongest limits to date on the velocity-independent dark matter (DM)-proton cross section σ for DM masses m=10 keV to 100 GeV, using large-scale structure traced by the Lyman-alpha forest: e.g., a 95% lower limit σ<6×10^{-30} cm^{2}, for m=100 keV. Our results complement direct detection, which has limited sensitivity to sub-GeV DM. We use an emulator of cosmological simulations, combined with data from the smallest cosmological scales used to date, to model and search for the imprint of primordial DM-proton collisions. Cosmological bounds are improved by up to a factor of 25.

4.
Phys Rev Lett ; 126(17): 171102, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33988410

ABSTRACT

Gravitational wave (GW) and electromagnetic (EM) observations of neutron-star-black-hole (NSBH) mergers can provide precise local measurements of the Hubble constant (H_{0}), ideal for resolving the current H_{0} tension. We perform end-to-end analyses of realistic populations of simulated NSBHs, incorporating both GW and EM selection for the first time. We show that NSBHs could achieve unbiased 1.5%-2.4% precision H_{0} estimates by 2030. The achievable precision is strongly affected by the details of spin precession and tidal disruption, highlighting the need for improved modeling of NSBH mergers.

5.
Phys Rev Lett ; 126(7): 071302, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33666479

ABSTRACT

We present a new bound on the ultralight axion (ULA) dark matter mass m_{a}, using the Lyman-alpha forest to look for suppressed cosmic structure growth: a 95% lower limit m_{a}>2×10^{-20} eV. This strongly disfavors (>99.7% credibility) the canonical ULA with 10^{-22} eV

6.
Phys Rev Lett ; 123(3): 031601, 2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31386458

ABSTRACT

We introduce a new picture of vacuum decay which, in contrast to existing semiclassical techniques, provides a real-time description and does not rely on classically forbidden tunneling paths. Using lattice simulations, we observe vacuum decay via bubble formation by generating realizations of vacuum fluctuations and evolving with the classical equations of motion. The decay rate obtained from an ensemble of simulations is in excellent agreement with existing techniques. Future applications include bubble correlation functions, fast decay rates, and decay of nonvacuum states.

7.
Phys Rev Lett ; 122(6): 061105, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30822066

ABSTRACT

The Hubble constant (H_{0}) estimated from the local Cepheid-supernova distance ladder is in 3-σ tension with the value extrapolated from cosmic microwave background (CMB) data assuming the standard cosmological model. Whether this tension represents new physics or systematic effects is the subject of intense debate. Here, we investigate how new, independent H_{0} estimates can arbitrate this tension, assessing whether the measurements are consistent with being derived from the same model using the posterior predictive distribution (PPD). We show that, with existing data, the inverse distance ladder formed from BOSS baryon acoustic oscillation measurements and the Pantheon supernova sample yields an H_{0} posterior near identical to the Planck CMB measurement. The observed local distance ladder value is a very unlikely draw from the resulting PPD. Turning to the future, we find that a sample of ∼50 binary neutron star "standard sirens" (detectable within the next decade) will be able to adjudicate between the local and CMB estimates.

8.
Philos Trans A Math Phys Eng Sci ; 376(2114)2018 Mar 06.
Article in English | MEDLINE | ID: mdl-29358358

ABSTRACT

We simulate the behaviour of a Higgs-like field in the vicinity of a Schwarzschild black hole using a highly accurate numerical framework. We consider both the limit of the zero-temperature Higgs potential and a toy model for the time-dependent evolution of the potential when immersed in a slowly cooling radiation bath. Through these numerical investigations, we aim to improve our understanding of the non-equilibrium dynamics of a symmetry-breaking field (such as the Higgs) in the vicinity of a compact object such as a black hole. Understanding this dynamics may suggest new approaches for studying properties of scalar fields using black holes as a laboratory.This article is part of the Theo Murphy meeting issue 'Higgs Cosmology'.

9.
Phys Rev Lett ; 117(13): 131302, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27715088

ABSTRACT

A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of (σ_{V}/H)_{0}<4.7×10^{-11} (95% C.L.), which is an order of magnitude tighter than previous Planck results that used cosmic microwave background temperature only. We also place upper limits on other modes of anisotropic expansion, with the weakest limit arising from the regular tensor mode, (σ_{T,reg}/H)_{0}<1.0×10^{-6} (95% C.L.). Including all degrees of freedom simultaneously for the first time, anisotropic expansion of the Universe is strongly disfavored, with odds of 121 000:1 against.

10.
Phys Rev Lett ; 114(3): 031301, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25658992

ABSTRACT

We study the tensor spectral index n(t) and the tensor-to-scalar ratio r in the simplest multifield extension to single-field, slow-roll inflation models. We show that multifield models with potentials V∼[under ∑]iλ_{i}|ϕ_{i}|^{p} have different predictions for n(t)/r than single-field models, even when all the couplings are equal λ_{i}=λ_{j}, due to the probabilistic nature of the fields' initial values. We analyze well-motivated prior probabilities for the λ_{i} and initial conditions to make detailed predictions for the marginalized probability distribution of n(t)/r. With O(100) fields and p>3/4, we find that n(t)/r differs from the single-field result of n(t)/r=-1/8 at the 5σ level. This gives a novel and testable prediction for the simplest multifield inflation models.

11.
Phys Rev Lett ; 113(22): 221301, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25494066

ABSTRACT

We derive robust constraints on primordial non-Gaussianity (PNG) using the clustering of 800 000 photometric quasars from the Sloan Digital Sky Survey in the redshift range 0.5

12.
Phys Rev Lett ; 113(4): 041301, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-25105605

ABSTRACT

It has been claimed recently that massive sterile neutrinos could bring about a new concordance between observations of the cosmic microwave background, the large-scale structure of the Universe, and local measurements of the Hubble constant, H(0). We demonstrate that this apparent concordance results from combining data sets which are in significant tension, even within this extended model, possibly indicating remaining systematic biases in the measurements. We further show that this tension remains when the cosmological model is further extended to include significant tensor modes, as suggested by the recent BICEP2 results. Using the Bayesian evidence, we show that the cold dark matter model with a cosmological constant is strongly favored over its neutrino extensions by various combinations of data sets. Robust data combinations yield stringent limits of ∑m(ν) ≲ 0.3 eV and m(ν,sterile)(eff) ≲ 0.3 eV at 95% C.L. for the sum of active and sterile neutrinos, respectively.

13.
Phys Rev Lett ; 112(16): 161302, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24815634

ABSTRACT

We explore whether multifield inflationary models make unambiguous predictions for fundamental cosmological observables. Focusing on N-quadratic inflation, we numerically evaluate the full perturbation equations for models with 2, 3, and O(100) fields, using several distinct methods for specifying the initial values of the background fields. All scenarios are highly predictive, with the probability distribution functions of the cosmological observables becoming more sharply peaked as N increases. For N=100 fields, 95% of our Monte Carlo samples fall in the ranges ns∈(0.9455,0.9534), α∈(-9.741,-7.047)×10-4, r∈(0.1445,0.1449), and riso∈(0.02137,3.510)×10-3 for the spectral index, running, tensor-to-scalar ratio, and isocurvature-to-adiabatic ratio, respectively. The expected amplitude of isocurvature perturbations grows with N, raising the possibility that many-field models may be sensitive to postinflationary physics and suggesting new avenues for testing these scenarios.

14.
Phys Rev Lett ; 108(24): 241301, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-23004255

ABSTRACT

Fluctuations in the cosmic microwave background (CMB) contain information which has been pivotal in establishing the current cosmological model. These data can also be used to test well-motivated additions to this model, such as cosmic textures. Textures are a type of topological defect that can be produced during a cosmological phase transition in the early Universe, and which leave characteristic hot and cold spots in the CMB. We apply bayesian methods to carry out a rigorous test of the texture hypothesis, using full-sky data from the Wilkinson Microwave Anisotropy Probe. We conclude that current data do not warrant augmenting the standard cosmological model with textures. We rule out at 95% confidence models that predict more than 6 detectable cosmic textures on the full sky.

15.
Phys Rev Lett ; 107(7): 071301, 2011 Aug 12.
Article in English | MEDLINE | ID: mdl-21902380

ABSTRACT

The eternal inflation scenario predicts that our observable Universe resides inside a single bubble embedded in a vast inflating multiverse. We present the first observational tests of eternal inflation, performing a search for cosmological signatures of collisions with other bubble universes in cosmic microwave background data from the WMAP satellite. We conclude that the WMAP 7-year data do not warrant augmenting the cold dark matter model with a cosmological constant with bubble collisions, constraining the average number of detectable bubble collisions on the full sky N(s) < 1.6 at 68% C.L. Data from the Planck satellite can be used to more definitively test the bubble-collision hypothesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...