Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Plant Cell ; 11(3): 417-30, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10072401

ABSTRACT

The proper pairing, recombination, and segregation of chromosomes are central to meiosis and sexual reproduction. The syn1 mutation was previously identified as a synaptic mutant in a T-DNA-tagged population of plants. SYN1 has been isolated and found to exhibit similarity to Schizosaccharomyces pombe RAD21 and RAD21-like proteins, which are required for chromosome condensation and sister chromatid cohesion during mitosis. Plants homozygous for syn1 are male and female sterile and show defects in chromosome condensation and pairing beginning at leptonema of meiosis I. Fragmentation of the chromosomes was observed at metaphase I. Alternative promoters produced two SYN1 transcripts. One transcript was expressed at low levels in most tissues, whereas the other was expressed only in prebolting buds. DNA blot analyses suggest that Arabidopsis contains a small RAD21 gene family. Consistent with the DNA blot data, a second Arabidopsis RAD21-like gene has been identified. These results suggest that different RAD21-like proteins play essential roles in chromosome condensation and pairing during both meiosis and mitosis.


Subject(s)
Arabidopsis Proteins , Arabidopsis/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/isolation & purification , Meiosis/genetics , Nuclear Proteins/chemistry , Phosphoproteins/chemistry , Plant Proteins , Amino Acid Sequence , Base Sequence , Cloning, Molecular , DNA, Plant/chemistry , Gene Expression Regulation, Plant , Molecular Sequence Data , Schizosaccharomyces/genetics
2.
Plant J ; 11(4): 659-69, 1997 Apr.
Article in English | MEDLINE | ID: mdl-9161029

ABSTRACT

Fluorescence microscopy was used to study meiosis in microsporocytes from wild-type Arabidopsis thaliana and a T-DNA-tagged meiotic mutant. Techniques for visualizing chromosomes and beta-tubulin in other plant species were evaluated and modified in order to develop a method for analyzing meiosis in A. thaliana anthers. Like most dicots, A. thaliana microsporocytes undergo simultaneous cytokinesis in which both meiotic divisions are completed prior to cytokinesis. However, two unique events were observed in wild-type A. thaliana that have not been reported in other angiosperms: (1) polarization of the microsporocyte cytoskeleton during prophase I prior to nuclear envelope breakdown, and (2) extensive depolymerization of microtubules just prior to metaphase II. The first observation could have implications regarding a previously uncharacterized mechanism for determining the axis of the metaphase I spindle during microsporogenesis. The second observation is peculiar since microtubules are known to be involved in chromosome alignment in other species; possible explanations will be discussed. A T-DNA-tagged meiotic mutant of A. thaliana (syn1), which had previously been shown to produce abnormal microspores with variable DNA content, was also cytologically characterized. The first observable defect occurs in microsporocytes at telophase I, where some chromosomes are scattered throughout the cytoplasm, usually attached to stray microtubules. Subsequent development stages are affected, leading to complete male sterility. Based on similarities to synaptic mutants that have been described in other species, it is suggested that this mutant is defective in synaptonemal complex formation and/or cohesion between sister chromatids.


Subject(s)
Arabidopsis/genetics , DNA, Bacterial/genetics , DNA, Plant/genetics , Meiosis/genetics , Microscopy, Fluorescence , Mutation , Phenotype , Reproduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL