Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Water Res ; 130: 20-30, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29190513

ABSTRACT

Algae and cyanobacteria frequently require separation from liquid media in both water treatment and algae culturing for biotechnology applications. The effectiveness of cell separation using a novel dissolved air flotation process that incorporates positively charged bubbles (PosiDAF) has recently been of interest but has been shown to be dependent on the algae or cyanobacteria species tested. Previously, it was hypothesised that algal organic matter (AOM) could be impacting the separation efficiency. Hence, this study investigates the influence of AOM on cell separation using PosiDAF, in which bubbles are modified using a commercially available cationic polyelectrolyte poly(N, N-diallyl-N,N-dimethylammonium chloride) (PDADMAC). The separation of Chlorella vulgaris CS-42/7, Mychonastes homosphaera CS-556/01 and two strains of Microcystis aeruginosa (CS-564/01 and CS-555/1), all of which have similar cell morphology but different AOM character, was investigated. By testing the cell separation in the presence and absence of AOM, it was determined that AOM enhanced cell separation for all the strains but to different extents depending on the quantity and composition of carbohydrates and proteins in the AOM. By extracting AOM from the strain for which optimal separation was observed and adding it to the others, cell separation improved from <55% to >90%. This was attributed to elevated levels of acidic carbohydrates as well as glycoprotein-carbohydrate conjugations, which in turn were related to the nature and quantity of proteins and carbohydrates present in the AOM. Therefore, it was concluded that process optimisation requires an in-depth understanding of the AOM and its components. If culturing algae for biotechnology applications, this indicates that strain selection is not only important with respect to high value product content, but also for cell separation.


Subject(s)
Chlorella vulgaris , Chlorophyta , Cyanobacteria , Microcystis , Water Purification/methods , Biotechnology/methods , Polyethylenes/chemistry , Quaternary Ammonium Compounds/chemistry
2.
Sci Total Environ ; 599-600: 85-93, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28472696

ABSTRACT

Methane (CH4) is an important anthropogenic greenhouse gas and a by-product of urban sewage management. In recent years and contrary to international (IPCC) consensus, pressurised (anaerobic) sewers were identified as important CH4 sources, yet relatively little remains known regarding the role of gravity sewers in CH4 production and conveyance. Here we provide the results of a nine month study assessing dissolved CH4 levels in the raw influent of three large Australian wastewater treatment plants (WWTPs) fed by gravity sewers. Similar to recent international research and contrary to IPCC guidance, results show that gravity sewered wastewater contains moderate levels of CH4 (≈1mgL-1). Dissolved CH4 concentration correlated negatively with daily sewage flow rate (i.e. inversely proportional to sewer hydraulic residence time), with daily CH4 mass loads on average some two-fold greater under low flow (dry weather) conditions. Along with sewage hydraulic residence time, sewer sediments are thought to interact with sewage flow rate and are considered to play a key role in gravity sewer CH4 production. A per capita load of 78gCH4person-1y-1 is offered for gravity sewered wastewater entering WWTPs, with a corresponding emission estimate of up to 62gCH4person-1y-1, assuming 80% water-to-air transfer of inflowing CH4 in WWTPs with combined preliminary-primary plus secondary treatment. Results here support the emerging consensus view that hydraulic operation (i.e. gravity versus pressurised, sewage flow rate) is a key factor in determining sewer CH4 production, with gravity sewer segments likely to play a dominant role in total CH4 production potential for large metropolitan sewer networks. Further work is warranted to assess the scale and temporal dynamics of CH4 production in gravity sewers elsewhere, with more work needed to adequately capture and assess the scale of diffuse sewer network CH4 emissions from sprawling urban settlements globally.


Subject(s)
Methane/analysis , Sewage/chemistry , Wastewater/chemistry , Australia
3.
Sci Total Environ ; 468-469: 211-8, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24029693

ABSTRACT

Nitrous oxide (N2O) is a primary ozone-depleting substance and powerful greenhouse gas. N2O emissions from secondary-level wastewater treatment processes are relatively well understood as a result of intensive international research effort in recent times, yet little information exists to date on the role of sewers in wastewater management chain N2O dynamics. Here we provide the first detailed assessment of N2O levels in the untreated influent (i.e. sewer network effluent) of three large Australian metropolitan wastewater treatment plants. Contrary to current international (IPCC) guidance, results show gravity sewers to be a likely source of N2O. Results from the monitoring program revealed hydraulic flow rate as a strong driver for N2O generation in gravity sewers, with microbial processes (nitrification and possibly denitrification) implicated as the main processes responsible for its production. Results were also used to develop a presumptive emission factor for N2O in the context of municipal gravity sewers. Considering the discrepancy with current IPCC Guidelines, further work is warranted to assess the scale and dynamics of N2O production in sewers elsewhere.


Subject(s)
Cities , Nitrous Oxide/analysis , Sewage/chemistry , Waste Disposal, Fluid/statistics & numerical data , Analysis of Variance , Models, Theoretical , New South Wales , Waste Disposal, Fluid/instrumentation
4.
Biotechnol Bioeng ; 101(1): 109-18, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18454495

ABSTRACT

An activated sludge aeration control concept was developed utilizing off-gas nitrous oxide concentrations as a surrogate for autotrophic nitrifying bacterial inhibition and aeration air as a master control variable. The control concept was evaluated using a simulated pilot scale bioreactor (mathematically calibrated liquid phase process model and a model to link off-gas nitrous oxide generation to liquid phase conditions) as a data generator. When applied to the simulated system, the process controller was successful at maintaining the process at the desired operating setpoint and promoting stable operation by minimizing periods of significant inhibition. Furthermore, it provided a more efficient use of the air supplied to the bioreactor during periods of varying feed loading by matching the air supply to the metabolic demands, substantially reducing periods of over and under-aeration. The findings of this research demonstrate the potential for off-gas nitrous oxide monitoring as a completely non-invasive alternative to liquid phase monitoring used in conventional dissolved oxygen control. Investigations are currently underway at the laboratory scale to evaluate the benefits and limitations associated with this control concept, with particular emphasis on implementation issues and the quantification of potential aeration and cost savings.


Subject(s)
Bacteria, Aerobic/physiology , Bioreactors/microbiology , Models, Biological , Nitrogen/metabolism , Nitrous Oxide/analysis , Nitrous Oxide/metabolism , Sewage/microbiology , Computer Simulation , Feedback
SELECTION OF CITATIONS
SEARCH DETAIL