Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(14)2023 07 19.
Article in English | MEDLINE | ID: mdl-37508555

ABSTRACT

Patients on dialysis have dysfunctions of innate and adaptive immune system responses. The transcriptional factor IRF8 (interferon regulatory factor 8) is primarily expressed in plasmacytoid cells (pDCs) and myeloid dendritic cells (mDCs), playing a crucial role in the maturation of dendritic cells, monocytes, and macrophages, and contributing to protection against bacterial infections. The current study analyzed the expression patterns of IRF8 and assessed its association with the risk of infections in 79 dialysis patients compared to 44 healthy controls. Different subsets of leukocytes and the intracellular expression of IRF8 were measured using flow cytometry. Compared to the healthy controls, the dialysis patients showed significantly reduced numbers of pDCs and significantly increased numbers of natural killer cells and classical and intermediate monocytes. The dialysis patients exhibited decreased numbers of IRF8-positive dendritic cells (pDC p < 0.001, mDC1 p < 0.001, mDC2 p = 0.005) and increased numbers of IRF8-positive monocytes (p < 0.001). IRF8 expression in pDC, mDC, and classical monocytes was lower in the dialysis patients than in the controls. Dialysis patients who required hospitalization due to infections within one year of follow-up displayed significantly reduced IRF8 expression levels in pDCs compared to patients without such infections (p = 0.04). Our results suggest that reduced IRF8 expression in pDCs is a potential risk factor predisposing dialysis patients to serious infections.


Subject(s)
Interferon Regulatory Factors , Renal Dialysis , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Monocytes/metabolism , Lymphocytes/metabolism
2.
Pathogens ; 11(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36297195

ABSTRACT

The GNAS gene encodes the alpha-subunit of the stimulatory G-protein (Gαs) in humans and mice. The single-nucleotide polymorphism of GNAS, c.393C>T, is associated with an elevated production of Gαs and an increased formation of cyclic adenosine monophosphate (cAMP). In the present study, we analyzed the effect of this GNAS polymorphism on a renal allograft outcome. We screened a cohort of 436 renal allograft recipients, who were retrospectively followed up for up to 5 years after transplant. GNAS genotypes were determined with polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) assays. The 393T allele was detected in 319 (73%) recipients (113 recipients with TT and 206 with CT genotype) and the CC genotype in 117 (27%). The CC genotype was associated with a significantly lower frequency of BK viremia (CC, 17 recipients (15%); T 84 (26%)); p = 0.01; TT, 27 vs. CC, 17, p = 0.07; TT, 27 vs. CT, 57, p = 0. 46; CT, 57 vs. CC, 17, p = 0.01) and BKV-associated nephropathy (CC, 3 recipients (3%); T, 27 (8%); p = 0.03; TT,10 vs. CC, 3, p = 0.04; TT, 10 vs. CT,17, p = 0.85; CT, 17 vs. CC,3, p = 0.04) after transplant. BKV-associated nephropathy-free survival was significantly better among CC genotype carriers than among T allele carriers (p = 0.043; TT vs. CC, p = 0.03; CT vs. CC, p = 0.04; TT vs. CT, p = 0.83). Multivariate analysis indicated an independent protective effect of the CC genotype against the development of both BK viremia (relative risk. 0.54; p = 0.04) and BKV-associated nephropathy after renal transplant (relative risk. 0.27; p = 0.036). The GNAS 393 CC genotype seems to protect renal allograft recipients against the development of BK viremia and BKV-associated nephropathy.

3.
Int J Mol Sci ; 23(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36077181

ABSTRACT

The c.825C>T single-nucleotide polymorphism (rs5443) of the guanine nucleotide-binding protein subunit ß3 (GNB3) results in increased intracellular signal transduction via G-proteins. The present study investigated the effect of the GNB3 c.825C>T polymorphism on cardiovascular events among renal allograft recipients posttransplant. Our retrospective study involved 436 renal allograft recipients who were followed up for up to 8 years after transplant. The GNB3 c.825C>T polymorphism was detected with restriction fragment length polymorphism (RFLP) polymerase chain reaction (PCR). The GNB3 TT genotype was detected in 43 (10%) of 436 recipients. Death due to an acute cardiovascular event occurred more frequently among recipients with the TT genotype (4 [9%]) than among those with the CC/CT genotypes (7 [2%]; p = 0.003). The rates of myocardial infarction (MI)−free survival (p = 0.003) and acute peripheral artery occlusive disease (PAOD)−free survival (p = 0.004) were significantly lower among T-homozygous patients. A multivariate analysis showed that homozygous GNB3 c.825C>T polymorphism exerted only a mild effect for the occurrence of myocardial infarction (relative risk, 2.2; p = 0.065) or acute PAOD (relative risk, 2.4; p = 0.05) after renal transplant. Our results suggest that the homozygous GNB3 T allele exerts noticeable effects on the risk of MI and acute PAOD only in the presence of additional nonheritable risk factors.


Subject(s)
Heterotrimeric GTP-Binding Proteins , Kidney Transplantation , Myocardial Infarction , Alleles , Allografts , Genotype , Heterotrimeric GTP-Binding Proteins/genetics , Humans , Kidney Transplantation/adverse effects , Myocardial Infarction/genetics , Polymorphism, Single Nucleotide , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...