Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Mol Cancer Ther ; 22(4): 485-498, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36780225

ABSTRACT

Management of hepatoblastoma (HB), the most frequent pediatric liver cancer, is based on surgical resection and perioperative chemotherapy regimens. In this study, we aimed to identify actionable targets in HB and assess the efficacy of molecular therapies in preclinical models of HB. Paired tumor and adjacent tissues from 31 HBs and a validation set of 50 HBs were analyzed using RNA-seq, SNP, and methylation arrays. IGF2 overexpression was identified as the top targetable HB driver, present in 71% of HBs (22/31). IGF2high tumors displayed progenitor cell features and shorter recurrence-free survival. IGF2 overexpression was associated in 91% of cases with fetal promoter hypomethylation, ICR1 deregulation, 11p15.5 loss of heterozygosity or miR483-5p overexpression. The antitumor effect of xentuzumab (a monoclonal antibody targeting IGF1/2) alone or in combination with the conventional therapeutic agent cisplatin was assessed in HB cell lines, in PDX-derived HB organoids and in a xenograft HB murine model. The combination of xentuzumab with cisplatin showed strong synergistic antitumor effects in organoids and in IGF2high cell lines. In mice (n = 55), the combination induced a significant decrease in tumor volume and improved survival compared with cisplatin alone. These results suggest that IGF2 is an HB actionable driver and that, in preclinical models of HB, the combination of IGF1/2 inhibition with cisplatin induces superior antitumor effects than cisplatin monotherapy. Overall, our study provides a rationale for testing IGF2 inhibitors in combination with cisplatin in HB patients with IGF2 overexpression.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Humans , Animals , Mice , Hepatoblastoma/drug therapy , Hepatoblastoma/genetics , Hepatoblastoma/pathology , Cisplatin/pharmacology , Cisplatin/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , DNA Methylation , Genomics , Insulin-Like Growth Factor II/genetics
2.
Clin Cancer Res ; 28(11): 2449-2460, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35302601

ABSTRACT

PURPOSE: Immune checkpoint inhibitors combined with antiangiogenic agents produce benefits in the treatment of advanced hepatocellular carcinoma (HCC). We investigated the efficacy and immunomodulatory activity of cabozantinib alone and combined with anti-PD1 in experimental models of HCC, and explored the potential target population that might benefit from this combination. EXPERIMENTAL DESIGN: C57BL/6J mice bearing subcutaneous Hepa1-6 or Hep53.4 tumors received cabozantinib, anti-PD1, their combination, or placebo. Tumor and blood samples were analyzed by flow cytometry, IHC, transcriptome, and cytokine profiling. Cabozantinib-related effects were validated in a colorectal cancer patient-derived xenograft model. Transcriptomic data from three human HCC cohorts (cohort 1: n = 167, cohort 2: n = 57, The Cancer Genome Atlas: n = 319) were used to cluster patients according to neutrophil features, and assess their impact on survival. RESULTS: The combination of cabozantinib and anti-PD1 showed increased antitumor efficacy compared with monotherapy and placebo (P < 0.05). Cabozantinib alone significantly increased neutrophil infiltration and reduced intratumor CD8+PD1+ T-cell proportions, while the combination with anti-PD1 further stimulated both effects and significantly decreased regulatory T cell (Treg) infiltration (all P < 0.05). In blood, cabozantinib and especially combination increased the proportions of overall T cells (P < 0.01) and memory/effector T cells (P < 0.05), while lowering the neutrophil-to-lymphocyte ratio (P < 0.001 for combination). Unsupervised clustering of human HCCs revealed that high tumor enrichment in neutrophil features observed with the treatment combination was linked to less aggressive tumors with more differentiated and less proliferative phenotypes. CONCLUSIONS: Cabozantinib in combination with anti-PD1 enhanced antitumor immunity by bringing together innate neutrophil-driven and adaptive immune responses, a mechanism of action which favors this approach for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Anilides , Animals , Carcinoma, Hepatocellular/pathology , Humans , Immunity , Liver Neoplasms/pathology , Mice , Mice, Inbred C57BL , Neutrophils/pathology , Programmed Cell Death 1 Receptor , Pyridines
4.
Hepatology ; 74(5): 2652-2669, 2021 11.
Article in English | MEDLINE | ID: mdl-34157147

ABSTRACT

BACKGROUND AND AIMS: Lenvatinib is an effective drug in advanced HCC. Its combination with the anti-PD1 (programmed cell death protein 1) immune checkpoint inhibitor, pembrolizumab, has generated encouraging results in phase Ib and is currently being tested in phase III trials. Here, we aimed to explore the molecular and immunomodulatory effects of lenvatinib alone or in combination with anti-PD1. APPROACH AND RESULTS: We generated three syngeneic models of HCC in C57BL/6J mice (subcutaneous and orthotopic) and randomized animals to receive placebo, lenvatinib, anti-PD1, or combination treatment. Flow cytometry, transcriptomic, and immunohistochemistry analyses were performed in tumor and blood samples. A gene signature, capturing molecular features associated with the combination therapy, was used to identify a subset of candidates in a cohort of 228 HCC patients who might respond beyond what is expected for monotherapies. In mice, the combination treatment resulted in tumor regression and shorter time to response compared to monotherapies (P < 0.001). Single-agent anti-PD1 induced dendritic and T-cell infiltrates, and lenvatinib reduced the regulatory T cell (Treg) proportion. However, only the combination treatment significantly inhibited immune suppressive signaling, which was associated with the TGFß pathway and induced an immune-active microenvironment (P < 0.05 vs. other therapies). Based on immune-related genomic profiles in human HCC, 22% of patients were identified as potential responders beyond single-agent therapies, with tumors characterized by Treg cell infiltrates, low inflammatory signaling, and VEGFR pathway activation. CONCLUSIONS: Lenvatinib plus anti-PD1 exerted unique immunomodulatory effects through activation of immune pathways, reduction of Treg cell infiltrate, and inhibition of TGFß signaling. A gene signature enabled the identification of ~20% of human HCCs that, although nonresponding to single agents, could benefit from the proposed combination.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Phenylurea Compounds/pharmacology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Quinolines/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Hepatocellular/immunology , Cell Line, Tumor/transplantation , Disease Models, Animal , Drug Screening Assays, Antitumor , Drug Synergism , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Male , Mice , Phenylurea Compounds/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Quinolines/therapeutic use , Tumor Escape/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
5.
J Hepatol ; 75(4): 865-878, 2021 10.
Article in English | MEDLINE | ID: mdl-33992698

ABSTRACT

BACKGROUND AND AIMS: Non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinoma (HCC) is increasing globally, but its molecular features are not well defined. We aimed to identify unique molecular traits characterising NASH-HCC compared to other HCC aetiologies. METHODS: We collected 80 NASH-HCC and 125 NASH samples from 5 institutions. Expression array (n = 53 NASH-HCC; n = 74 NASH) and whole exome sequencing (n = 52 NASH-HCC) data were compared to HCCs of other aetiologies (n = 184). Three NASH-HCC mouse models were analysed by RNA-seq/expression-array (n = 20). Activin A receptor type 2A (ACVR2A) was silenced in HCC cells and proliferation assessed by colorimetric and colony formation assays. RESULTS: Mutational profiling of NASH-HCC tumours revealed TERT promoter (56%), CTNNB1 (28%), TP53 (18%) and ACVR2A (10%) as the most frequently mutated genes. ACVR2A mutation rates were higher in NASH-HCC than in other HCC aetiologies (10% vs. 3%, p <0.05). In vitro, ACVR2A silencing prompted a significant increase in cell proliferation in HCC cells. We identified a novel mutational signature (MutSig-NASH-HCC) significantly associated with NASH-HCC (16% vs. 2% in viral/alcohol-HCC, p = 0.03). Tumour mutational burden was higher in non-cirrhotic than in cirrhotic NASH-HCCs (1.45 vs. 0.94 mutations/megabase; p <0.0017). Compared to other aetiologies of HCC, NASH-HCCs were enriched in bile and fatty acid signalling, oxidative stress and inflammation, and presented a higher fraction of Wnt/TGF-ß proliferation subclass tumours (42% vs. 26%, p = 0.01) and a lower prevalence of the CTNNB1 subclass. Compared to other aetiologies, NASH-HCC showed a significantly higher prevalence of an immunosuppressive cancer field. In 3 murine models of NASH-HCC, key features of human NASH-HCC were preserved. CONCLUSIONS: NASH-HCCs display unique molecular features including higher rates of ACVR2A mutations and the presence of a newly identified mutational signature. LAY SUMMARY: The prevalence of hepatocellular carcinoma (HCC) associated with non-alcoholic steatohepatitis (NASH) is increasing globally, but its molecular traits are not well characterised. In this study, we uncovered higher rates of ACVR2A mutations (10%) - a potential tumour suppressor - and the presence of a novel mutational signature that characterises NASH-related HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Molecular Biology/statistics & numerical data , Non-alcoholic Fatty Liver Disease/genetics , Aged , Aged, 80 and over , Carcinoma, Hepatocellular/etiology , Female , Humans , Liver Neoplasms/etiology , Liver Neoplasms/genetics , Male , Middle Aged , Molecular Biology/methods , Non-alcoholic Fatty Liver Disease/complications , Risk Factors
6.
Hepatology ; 74(1): 183-199, 2021 07.
Article in English | MEDLINE | ID: mdl-33237575

ABSTRACT

BACKGROUND AND AIMS: Mutations in TERT (telomerase reverse transcriptase) promoter are established gatekeepers in early hepatocarcinogenesis, but little is known about other molecular alterations driving this process. Epigenetic deregulation is a critical event in early malignancies. Thus, we aimed to (1) analyze DNA methylation changes during the transition from preneoplastic lesions to early HCC (eHCC) and identify candidate epigenetic gatekeepers, and to (2) assess the prognostic potential of methylation changes in cirrhotic tissue. APPROACH AND RESULTS: Methylome profiling was performed using Illumina HumanMethylation450 (485,000 cytosine-phosphateguanine, 96% of known cytosine-phosphateguanine islands), with data available for a total of 390 samples: 16 healthy liver, 139 cirrhotic tissue, 8 dysplastic nodules, and 227 HCC samples, including 40 eHCC below 2cm. A phylo-epigenetic tree derived from the Euclidean distances between differentially DNA-methylated sites (n = 421,997) revealed a gradient of methylation changes spanning healthy liver, cirrhotic tissue, dysplastic nodules, and HCC with closest proximity of dysplasia to HCC. Focusing on promoter regions, we identified epigenetic gatekeeper candidates with an increasing proportion of hypermethylated samples (beta value > 0.5) from cirrhotic tissue (<1%), to dysplastic nodules (≥25%), to eHCC (≥50%), and confirmed inverse correlation between DNA methylation and gene expression for TSPYL5 (testis-specific Y-encoded-like protein 5), KCNA3 (potassium voltage-gated channel, shaker-related subfamily, member 3), LDHB (lactate dehydrogenase B), and SPINT2 (serine peptidase inhibitor, Kunitz type 2) (all P < 0.001). Unsupervised clustering of genome-wide methylation profiles of cirrhotic tissue identified two clusters, M1 and M2, with 42% and 58% of patients, respectively, which correlates with survival (P < 0.05), independent of etiology. CONCLUSIONS: Genome-wide DNA-methylation profiles accurately discriminate the different histological stages of human hepatocarcinogenesis. We report on epigenetic gatekeepers in the transition between dysplastic nodules and eHCC. DNA-methylation changes in cirrhotic tissue correlate with clinical outcomes.


Subject(s)
Carcinogenesis/genetics , Carcinoma, Hepatocellular/genetics , DNA Methylation , Liver Cirrhosis/genetics , Liver Neoplasms/genetics , Aged , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Epigenesis, Genetic , Female , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Liver/pathology , Liver Cirrhosis/pathology , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Male , Middle Aged , Prognosis
7.
J Hepatol ; 73(2): 315-327, 2020 08.
Article in English | MEDLINE | ID: mdl-32173382

ABSTRACT

BACKGROUND & AIMS: Cholangiocarcinoma (CCA), a deadly malignancy of the bile ducts, can be classified based on its anatomical location into either intrahepatic (iCCA) or extrahepatic (eCCA), each with different pathogenesis and clinical management. There is limited understanding of the molecular landscape of eCCA and no targeted therapy with clinical efficacy has been approved. We aimed to provide a molecular classification of eCCA and identify potential targets for molecular therapies. METHODS: An integrative genomic analysis of an international multicenter cohort of 189 eCCA cases was conducted. Genomic analysis included whole-genome expression, targeted DNA-sequencing and immunohistochemistry. Molecular findings were validated in an external set of 181 biliary tract tumors from the ICGC. RESULTS: KRAS (36.7%), TP53 (34.7%), ARID1A (14%) and SMAD4 (10.7%) were the most prevalent mutations, with ∼25% of tumors having a putative actionable genomic alteration according to OncoKB. Transcriptome-based unsupervised clustering helped us define 4 molecular classes of eCCA. Tumors classified within the Metabolic class (19%) showed a hepatocyte-like phenotype with activation of the transcription factor HNF4A and enrichment in gene signatures related to bile acid metabolism. The Proliferation class (23%), more common in patients with distal CCA, was characterized by enrichment of MYC targets, ERBB2 mutations/amplifications and activation of mTOR signaling. The Mesenchymal class (47%) was defined by signatures of epithelial-mesenchymal transition, aberrant TGFß signaling and poor overall survival. Finally, tumors in the Immune class (11%) had a higher lymphocyte infiltration, overexpression of PD-1/PD-L1 and molecular features associated with a better response to immune checkpoint inhibitors. CONCLUSION: An integrative molecular characterization identified distinct subclasses of eCCA. Genomic traits of each class provide the rationale for exploring patient stratification and novel therapeutic approaches. LAY SUMMARY: Targeted therapies have not been approved for the treatment of extrahepatic cholangiocarcinoma. We performed a multi-platform molecular characterization of this tumor in a cohort of 189 patients. These analyses revealed 4 novel transcriptome-based molecular classes of extrahepatic cholangiocarcinoma and identified ∼25% of tumors with actionable genomic alterations, which has potential prognostic and therapeutic implications.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Molecular Targeted Therapy/methods , Sequence Analysis, DNA/methods , Signal Transduction/genetics , Aged , B7-H1 Antigen/genetics , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Cohort Studies , Drug Discovery , Europe/epidemiology , Female , Genome-Wide Association Study/methods , Hepatocyte Nuclear Factor 4/genetics , Humans , Immunohistochemistry , Male , Prognosis , Programmed Cell Death 1 Receptor/genetics , Receptor, ErbB-2/genetics , United States/epidemiology
8.
Gastroenterology ; 157(5): 1383-1397.e11, 2019 11.
Article in English | MEDLINE | ID: mdl-31344396

ABSTRACT

BACKGROUND & AIMS: Cirrhosis and chronic inflammation precede development of hepatocellular carcinoma (HCC) in approximately 80% of cases. We investigated immune-related gene expression patterns in liver tissues surrounding early-stage HCCs and chemopreventive agents that might alter these patterns to prevent liver tumorigenesis. METHODS: We analyzed gene expression profiles of nontumor liver tissues from 392 patients with early-stage HCC (training set, N = 167 and validation set, N = 225) and liver tissue from patients with cirrhosis without HCC (N = 216, controls) to identify changes in expression of genes that regulate the immune response that could contribute to hepatocarcinogenesis. We defined 172 genes as markers for this deregulated immune response, which we called the immune-mediated cancer field (ICF). We analyzed the expression data of liver tissues from 216 patients with cirrhosis without HCC and investigated the association between this gene expression signature and development of HCC and outcomes of patients (median follow-up, 10 years). Human liver tissues were also analyzed by histology. C57BL/6J mice were given a single injection of diethylnitrosamine (DEN) followed by weekly doses of carbon tetrachloride to induce liver fibrosis and tumorigenesis. Mice were then orally given the multiple tyrosine inhibitor nintedanib or vehicle (controls); liver tissues were collected and histology, transcriptome, and protein analyses were performed. We also analyzed transcriptomes of liver tissues collected from mice on a choline-deficient high-fat diet, which developed chronic liver inflammation and tumors, orally given aspirin and clopidogrel or the anti-inflammatory agent sulindac vs mice on a chow (control) diet. RESULTS: We found the ICF gene expression pattern in 50% of liver tissues from patients with cirrhosis without HCC and in 60% of nontumor liver tissues from patients with early-stage HCC. The liver tissues with the ICF gene expression pattern had 3 different features: increased numbers of effector T cells; increased expression of genes that suppress the immune response and activation of transforming growth factor ß signaling; or expression of genes that promote inflammation and activation of interferon gamma signaling. Patients with cirrhosis and liver tissues with the immunosuppressive profile (10% of cases) had a higher risk of HCC (hazard ratio, 2.41; 95% confidence interval, 1.21-4.80). Mice with chemically induced fibrosis or diet-induced steatohepatitis given nintedanib or aspirin and clopidogrel down-regulated the ICF gene expression pattern in liver and developed fewer and smaller tumors than mice given vehicle. CONCLUSIONS: We identified an immune-related gene expression pattern in liver tissues of patients with early-stage HCC, called the ICF, that is associated with risk of HCC development in patients with cirrhosis. Administration of nintedanib or aspirin and clopidogrel to mice with chronic liver inflammation caused loss of this gene expression pattern and development of fewer and smaller liver tumors. Agents that alter immune regulatory gene expression patterns associated with carcinogenesis might be tested as chemopreventive agents in patients with cirrhosis.


Subject(s)
Anticarcinogenic Agents/pharmacology , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/prevention & control , Liver Neoplasms/genetics , Transcriptome , Animals , Aspirin/pharmacology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Case-Control Studies , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/pathology , Clopidogrel/pharmacology , Diethylnitrosamine , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Indoles/pharmacology , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Male , Mice, Inbred C57BL , Tumor Escape/genetics , Tumor Microenvironment
9.
Br J Cancer ; 121(4): 340-343, 2019 08.
Article in English | MEDLINE | ID: mdl-31285588

ABSTRACT

The clinical utility of serum alpha-fetoprotein (AFP) in patients with hepatocellular carcinoma (HCC) is widely recognised. However, a clear understanding of the mechanisms of AFP overexpression and the molecular traits of patients with AFP-high tumours are not known. We assessed transcriptome data, whole-exome sequencing data and DNA methylome profiling of 520 HCC patients from two independent cohorts to identify distinct molecular traits of patients with AFP-high tumours (serum concentration > 400 ng/ml), which represents an accepted prognostic cut-off and a predictor of response to ramucirumab. Those AFP-high tumours (18% of resected cases) were characterised by significantly lower AFP promoter methylation (p < 0.001), significant enrichment of progenitor-cell features (CK19, EPCAM), higher incidence of BAP1 oncogene mutations (8.5% vs 1.6%) and lower mutational rates of CTNNB1 (14% vs 30%). Specifically, AFP-high tumours displayed significant activation of VEGF signalling (p < 0.001), which might provide the rationale for the reported benefit of ramucirumab in this subgroup of patients.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , alpha-Fetoproteins/genetics , Antibodies, Monoclonal, Humanized/therapeutic use , Biomarkers, Tumor/blood , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/drug therapy , Clinical Trials as Topic , DNA Methylation , Humans , Liver Neoplasms/blood , Liver Neoplasms/drug therapy , Promoter Regions, Genetic , alpha-Fetoproteins/analysis , beta Catenin/genetics , Ramucirumab
10.
Gut ; 66(3): 530-540, 2017 03.
Article in English | MEDLINE | ID: mdl-26658144

ABSTRACT

OBJECTIVE: Sorafenib is effective in hepatocellular carcinoma (HCC), but patients ultimately present disease progression. Molecular mechanisms underlying acquired resistance are still unknown. Herein, we characterise the role of tumour-initiating cells (T-ICs) and signalling pathways involved in sorafenib resistance. DESIGN: HCC xenograft mice treated with sorafenib (n=22) were explored for responsiveness (n=5) and acquired resistance (n=17). Mechanism of acquired resistance were assessed by: (1) role of T-ICs by in vitro sphere formation and in vivo tumourigenesis assays using NOD/SCID mice, (2) activation of alternative signalling pathways and (3) efficacy of anti-FGF and anti-IGF drugs in experimental models. Gene expression (microarray, quantitative real-time PCR (qRT-PCR)) and protein analyses (immunohistochemistry, western blot) were conducted. A novel gene signature of sorafenib resistance was generated and tested in two independent cohorts. RESULTS: Sorafenib-acquired resistant tumours showed significant enrichment of T-ICs (164 cells needed to create a tumour) versus sorafenib-sensitive tumours (13 400 cells) and non-treated tumours (1292 cells), p<0.001. Tumours with sorafenib-acquired resistance were enriched with insulin-like growth factor (IGF) and fibroblast growth factor (FGF) signalling cascades (false discovery rate (FDR)<0.05). In vitro, cells derived from sorafenib-acquired resistant tumours and two sorafenib-resistant HCC cell lines were responsive to IGF or FGF inhibition. In vivo, FGF blockade delayed tumour growth and improved survival in sorafenib-resistant tumours. A sorafenib-resistance 175 gene signature was characterised by enrichment of progenitor cell features, aggressive tumorous traits and predicted poor survival in two cohorts (n=442 patients with HCC). CONCLUSIONS: Acquired resistance to sorafenib is driven by T-ICs with enrichment of progenitor markers and activation of IGF and FGF signalling. Inhibition of these pathways would benefit a subset of patients after sorafenib progression.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Drug Resistance, Neoplasm , Fibroblast Growth Factors/metabolism , Liver Neoplasms/drug therapy , Niacinamide/analogs & derivatives , Phenylurea Compounds/therapeutic use , Somatomedins/metabolism , Aged , Animals , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Disease Progression , Female , Fibroblast Growth Factors/antagonists & inhibitors , Fibroblast Growth Factors/genetics , Gene Expression , Gene Expression Profiling , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Niacinamide/therapeutic use , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, IGF Type 1 , Receptors, Somatomedin/antagonists & inhibitors , Receptors, Somatomedin/metabolism , Signal Transduction , Somatomedins/antagonists & inhibitors , Somatomedins/genetics , Sorafenib , Spheroids, Cellular , Survival Rate , Xenograft Model Antitumor Assays
11.
Gastroenterology ; 144(4): 829-40, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23295441

ABSTRACT

BACKGROUND & AIMS: Cholangiocarcinoma, the second most common liver cancer, can be classified as intrahepatic cholangiocarcinoma (ICC) or extrahepatic cholangiocarcinoma. We performed an integrative genomic analysis of ICC samples from a large series of patients. METHODS: We performed a gene expression profile, high-density single-nucleotide polymorphism array, and mutation analyses using formalin-fixed ICC samples from 149 patients. Associations with clinicopathologic traits and patient outcomes were examined for 119 cases. Class discovery was based on a non-negative matrix factorization algorithm and significant copy number variations were identified by Genomic Identification of Significant Targets in Cancer (GISTIC) analysis. Gene set enrichment analysis was used to identify signaling pathways activated in specific molecular classes of tumors, and to analyze their genomic overlap with hepatocellular carcinoma (HCC). RESULTS: We identified 2 main biological classes of ICC. The inflammation class (38% of ICCs) is characterized by activation of inflammatory signaling pathways, overexpression of cytokines, and STAT3 activation. The proliferation class (62%) is characterized by activation of oncogenic signaling pathways (including RAS, mitogen-activated protein kinase, and MET), DNA amplifications at 11q13.2, deletions at 14q22.1, mutations in KRAS and BRAF, and gene expression signatures previously associated with poor outcomes for patients with HCC. Copy number variation-based clustering was able to refine these molecular groups further. We identified high-level amplifications in 5 regions, including 1p13 (9%) and 11q13.2 (4%), and several focal deletions, such as 9p21.3 (18%) and 14q22.1 (12% in coding regions for the SAV1 tumor suppressor). In a complementary approach, we identified a gene expression signature that was associated with reduced survival times of patients with ICC; this signature was enriched in the proliferation class (P < .001). CONCLUSIONS: We used an integrative genomic analysis to identify 2 classes of ICC. The proliferation class has specific copy number alterations, activation of oncogenic pathways, and is associated with worse outcome. Different classes of ICC, based on molecular features, therefore might require different treatment approaches.


Subject(s)
Cholangiocarcinoma/genetics , Cholangiocarcinoma/mortality , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease/epidemiology , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Aged , Bile Duct Neoplasms , Bile Ducts, Intrahepatic , Biopsy, Needle , Cholangiocarcinoma/classification , Cholangiocarcinoma/pathology , DNA Copy Number Variations , DNA Mutational Analysis , Databases, Factual , Disease Progression , Female , Gene Expression Profiling , Humans , Immunohistochemistry , In Situ Hybridization , Kaplan-Meier Estimate , Liver Neoplasms/classification , Liver Neoplasms/pathology , Male , Middle Aged , Prognosis , Retrospective Studies , Survival Analysis
12.
J Hepatol ; 52(4): 550-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20206398

ABSTRACT

BACKGROUND & AIMS: IGF signaling has a relevant role in a variety of human malignancies. We analyzed the underlying molecular mechanisms of IGF signaling activation in early hepatocellular carcinoma (HCC; BCLC class 0 or A) and assessed novel targeted therapies blocking this pathway. METHODS: An integrative molecular dissection of the axis was conducted in a cohort of 104 HCCs analyzing gene and miRNA expression, structural aberrations, and protein activation. The therapeutic potential of a selective IGF-1R inhibitor, the monoclonal antibody A12, was assessed in vitro and in a xenograft model of HCC. RESULTS: Activation of the IGF axis was observed in 21% of early HCCs. Several molecular aberrations were identified, such as overexpression of IGF2 -resulting from reactivation of fetal promoters P3 and P4-, IGFBP3 downregulation and allelic losses of IGF2R (25% of cases). A gene signature defining IGF-1R activation was developed. Overall, activation of IGF signaling in HCC was significantly associated with mTOR signaling (p=0.035) and was clearly enriched in the Proliferation subclass of the molecular classification of HCC (p=0.001). We also found an inverse correlation between IGF activation and miR-100/miR-216 levels (FDR<0.05). In vitro studies showed that A12-induced abrogation of IGF-1R activation and downstream signaling significantly decreased cell viability and proliferation. In vivo, A12 delayed tumor growth and prolonged survival, reducing proliferation rates and inducing apoptosis. CONCLUSIONS: Integrative genomic analysis showed enrichment of activation of IGF signaling in the Proliferation subclass of HCC. Effective blockage of IGF signaling with A12 provides the rationale for testing this therapy in clinical trials.


Subject(s)
Carcinoma, Hepatocellular , Insulin-Like Growth Factor II/genetics , Liver Neoplasms , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, IGF Type 1/genetics , Animals , Antibodies, Monoclonal/pharmacology , Apoptosis/physiology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/therapy , Cell Division/physiology , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Hepatocytes/pathology , Hepatocytes/physiology , Humans , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Insulin-Like Growth Factor Binding Protein 3 , Insulin-Like Growth Factor Binding Proteins/genetics , Insulin-Like Growth Factor Binding Proteins/metabolism , Insulin-Like Growth Factor II/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/therapy , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/metabolism , Receptor, IGF Type 1/immunology , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 2/genetics , Receptor, IGF Type 2/metabolism , Signal Transduction/physiology , Xenograft Model Antitumor Assays
13.
J Hepatol ; 51(4): 725-33, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19665249

ABSTRACT

BACKGROUND/AIMS: The success of sorafenib in the treatment of advanced hepatocellular carcinoma (HCC) has focused interest on the role of Ras signaling in this malignancy. We investigated the molecular alterations of the Ras pathway in HCC and the antineoplastic effects of sorafenib in combination with rapamycin, an inhibitor of mTOR pathway, in experimental models. METHODS: Gene expression (qRT-PCR, oligonucleotide microarray), DNA copy number changes (SNP-array), methylation of tumor suppressor genes (methylation-specific PCR) and protein activation (immunohistochemistry) were analysed in 351 samples. Anti-tumoral effects of combined therapy targeting the Ras and mTOR pathways were evaluated in cell lines and HCC xenografts. RESULTS: Different mechanisms accounted for Ras pathway activation in HCC. H-ras was up-regulated during different steps of hepatocarcinogenesis. B-raf was overexpressed in advanced tumors and its expression was associated with genomic amplification. Partial methylation of RASSF1A and NORE1A was detected in 89% and 44% of tumors respectively, and complete methylation was found in 11 and 4% of HCCs. Activation of the pathway (pERK immunostaining) was identified in 10.3% of HCC. Blockade of Ras and mTOR pathways with sorafenib and rapamycin reduced cell proliferation and induced apoptosis in cell lines. In vivo, the combination of both compounds enhanced tumor necrosis and ulceration when compared with sorafenib alone. CONCLUSIONS: Ras activation results from several molecular alterations, such as methylation of tumor suppressors and amplification of oncogenes (B-raf). Sorafenib blocks signaling and synergizes with rapamycin in vivo, preventing tumor progression. These data provide the rationale for testing this combination in clinical studies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Benzenesulfonates/administration & dosage , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Pyridines/administration & dosage , Sirolimus/administration & dosage , ras Proteins/metabolism , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Methylation/drug effects , Drug Synergism , Female , Gene Dosage/drug effects , Genes, ras/drug effects , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Mice , Mice, Nude , Neoplasm Transplantation , Niacinamide/analogs & derivatives , Phenylurea Compounds , Promoter Regions, Genetic/drug effects , Protein Kinases/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Signal Transduction/drug effects , Sorafenib , TOR Serine-Threonine Kinases , Transplantation, Heterologous
14.
N Engl J Med ; 359(19): 1995-2004, 2008 Nov 06.
Article in English | MEDLINE | ID: mdl-18923165

ABSTRACT

BACKGROUND: It is a challenge to identify patients who, after undergoing potentially curative treatment for hepatocellular carcinoma, are at greatest risk for recurrence. Such high-risk patients could receive novel interventional measures. An obstacle to the development of genome-based predictors of outcome in patients with hepatocellular carcinoma has been the lack of a means to carry out genomewide expression profiling of fixed, as opposed to frozen, tissue. METHODS: We aimed to demonstrate the feasibility of gene-expression profiling of more than 6000 human genes in formalin-fixed, paraffin-embedded tissues. We applied the method to tissues from 307 patients with hepatocellular carcinoma, from four series of patients, to discover and validate a gene-expression signature associated with survival. RESULTS: The expression-profiling method for formalin-fixed, paraffin-embedded tissue was highly effective: samples from 90% of the patients yielded data of high quality, including samples that had been archived for more than 24 years. Gene-expression profiles of tumor tissue failed to yield a significant association with survival. In contrast, profiles of the surrounding nontumoral liver tissue were highly correlated with survival in a training set of tissue samples from 82 Japanese patients, and the signature was validated in tissues from an independent group of 225 patients from the United States and Europe (P=0.04). CONCLUSIONS: We have demonstrated the feasibility of genomewide expression profiling of formalin-fixed, paraffin-embedded tissues and have shown that a reproducible gene-expression signature correlated with survival is present in liver tissue adjacent to the tumor in patients with hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular/genetics , Gene Expression Profiling/methods , Liver Neoplasms/genetics , Neoplasm Recurrence, Local/genetics , Aged , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Feasibility Studies , Female , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Humans , Liver/pathology , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Male , Middle Aged , Multivariate Analysis , Oligonucleotide Array Sequence Analysis/methods , Paraffin Embedding/methods , Polymerase Chain Reaction , Prognosis , Survival Analysis , Tissue Fixation/methods
15.
Gastroenterology ; 135(6): 1972-83, 1983.e1-11, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18929564

ABSTRACT

BACKGROUND & AIMS: The advent of targeted therapies in hepatocellular carcinoma (HCC) has underscored the importance of pathway characterization to identify novel molecular targets for treatment. We evaluated mTOR signaling in human HCC, as well as the antitumoral effect of a dual-level blockade of the mTOR pathway. METHODS: The mTOR pathway was assessed using integrated data from mutation analysis (direct sequencing), DNA copy number changes (SNP-array), messenger RNA levels (quantitative reverse-transcription polymerase chain reaction and gene expression microarray), and protein activation (immunostaining) in 351 human samples [HCC (n = 314) and nontumoral tissue (n = 37)]. Effects of dual blockade of mTOR signaling using a rapamycin analogue (everolimus) and an epidermal/vascular endothelial growth factor receptor inhibitor (AEE788) were evaluated in liver cancer cell lines and in a xenograft model. RESULTS: Aberrant mTOR signaling (p-RPS6) was present in half of the cases, associated with insulin-like growth factor pathway activation, epidermal growth factor up-regulation, and PTEN dysregulation. PTEN and PI3KCA-B mutations were rare events. Chromosomal gains in RICTOR (25% of patients) and positive p-RPS6 staining correlated with recurrence. RICTOR-specific siRNA down-regulation reduced tumor cell viability in vitro. Blockage of mTOR signaling with everolimus in vitro and in a xenograft model decelerated tumor growth and increased survival. This effect was enhanced in vivo after epidermal growth factor blockade. CONCLUSIONS: MTOR signaling has a critical role in the pathogenesis of HCC, with evidence for the role of RICTOR in hepato-oncogenesis. MTOR blockade with everolimus is effective in vivo. These findings establish a rationale for targeting the mTOR pathway in clinical trials in HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , Protein Kinases/genetics , RNA, Neoplasm/genetics , Adult , Aged , Aged, 80 and over , Animals , Apoptosis , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Female , Humans , Immunoblotting , Immunohistochemistry , In Situ Nick-End Labeling , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Male , Mice , Mice, Nude , Middle Aged , Phosphatidylinositol 3-Kinases , Protein Kinases/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , TOR Serine-Threonine Kinases
16.
Cancer Res ; 68(16): 6779-88, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18701503

ABSTRACT

Hepatocellular carcinomas represent the third leading cause of cancer-related deaths worldwide. The vast majority of cases arise in the context of chronic liver injury due to hepatitis B virus or hepatitis C virus infection. To identify genetic mechanisms of hepatocarcinogenesis, we characterized copy number alterations and gene expression profiles from the same set of tumors associated with hepatitis C virus. Most tumors harbored 1q gain, 8q gain, or 8p loss, with occasional alterations in 13 additional chromosome arms. In addition to amplifications at 11q13 in 6 of 103 tumors, 4 tumors harbored focal gains at 6p21 incorporating vascular endothelial growth factor A (VEGFA). Fluorescence in situ hybridization on an independent validation set of 210 tumors found 6p21 high-level gains in 14 tumors, as well as 2 tumors with 6p21 amplifications. Strikingly, this locus overlapped with copy gains in 4 of 371 lung adenocarcinomas. Overexpression of VEGFA via 6p21 gain in hepatocellular carcinomas suggested a novel, non-cell-autonomous mechanism of oncogene activation. Hierarchical clustering of gene expression among 91 of these tumors identified five classes, including "CTNNB1", "proliferation", "IFN-related", a novel class defined by polysomy of chromosome 7, and an unannotated class. These class labels were further supported by molecular data; mutations in CTNNB1 were enriched in the "CTNNB1" class, whereas insulin-like growth factor I receptor and RPS6 phosphorylation were enriched in the "proliferation" class. The enrichment of signaling pathway alterations in gene expression classes provides insights on hepatocellular carcinoma pathogenesis. Furthermore, the prevalence of VEGFA high-level gains in multiple tumor types suggests indications for clinical trials of antiangiogenic therapies.


Subject(s)
Carcinoma, Hepatocellular/genetics , Chromosome Aberrations , Gene Dosage , Liver Neoplasms/genetics , Signal Transduction , Vascular Endothelial Growth Factor A/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/classification , Carcinoma, Hepatocellular/virology , Chromosomes, Human, Pair 6/genetics , Chromosomes, Human, Pair 7/genetics , Gene Expression Profiling , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/genetics , Hepatitis C, Chronic/complications , Hepatitis C, Chronic/genetics , Humans , Immunoenzyme Techniques , In Situ Hybridization, Fluorescence , Karyotyping , Liver Neoplasms/classification , Liver Neoplasms/virology , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Neoplasm Staging , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Prognosis , Survival Rate , Tissue Array Analysis , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...