Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 284(46): 32053-65, 2009 Nov 13.
Article in English | MEDLINE | ID: mdl-19700763

ABSTRACT

This study aimed at identifying transcriptional changes associated to neuronal differentiation induced by six distinct stimuli using whole-genome microarray hybridization analysis. Bioinformatics analyses revealed the clustering of these six stimuli into two categories, suggesting separate gene/pathway dependence. Treatment with specific inhibitors demonstrated the requirement of both Janus kinase and microtubule-associated protein kinase activation to trigger differentiation with nerve growth factor (NGF) and dibutyryl cAMP. Conversely, activation of protein kinase A, phosphatidylinositol-3-kinase alpha, and mammalian target of rapamycin, although required for dibutyryl cAMP-induced differentiation, exerted a negative feedback on NGF-induced differentiation. We identified Polo-like kinase 2 (Plk2) and poliovirus receptor (PVR) as indispensable for NGF-driven neuronal differentiation and alphaB-crystallin (Cryab) as an inhibitor of this process. Silencing of Plk2 or PVR blocked NGF-triggered differentiation and Cryab down-regulation, while silencing of Cryab enhanced NGF-induced differentiation. Our results position both Plk2 and PVR upstream of the negative regulator Cryab in the pathway(s) leading to neuronal differentiation triggered by NGF.


Subject(s)
Genome , Neurons/cytology , Neurons/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptors, Virus/metabolism , alpha-Crystallin B Chain/metabolism , Animals , Blotting, Western , Cell Differentiation , Cells, Cultured , Computational Biology , Gene Expression Profiling , Humans , Mice , Nerve Growth Factor/pharmacology , Neurons/drug effects , Oligonucleotide Array Sequence Analysis , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Receptors, Virus/genetics , Reverse Transcriptase Polymerase Chain Reaction , alpha-Crystallin B Chain/genetics
2.
Mol Cell Biol ; 29(6): 1538-53, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19139271

ABSTRACT

Inadequate remyelination of brain white matter lesions has been associated with a failure of oligodendrocyte precursors to differentiate into mature, myelin-producing cells. In order to better understand which genes play a critical role in oligodendrocyte differentiation, we performed time-dependent, genome-wide gene expression studies of mouse Oli-neu cells as they differentiate into process-forming and myelin basic protein-producing cells, following treatment with three different agents. Our data indicate that different inducers activate distinct pathways that ultimately converge into the completely differentiated state, where regulated gene sets overlap maximally. In order to also gain insight into the functional role of genes that are regulated in this process, we silenced 88 of these genes using small interfering RNA and identified multiple repressors of spontaneous differentiation of Oli-neu, most of which were confirmed in rat primary oligodendrocyte precursors cells. Among these repressors were CNP, a well-known myelin constituent, and three phosphatases, each known to negatively control mitogen-activated protein kinase cascades. We show that a novel inhibitor for one of the identified genes, dual-specificity phosphatase DUSP10/MKP5, was also capable of inducing oligodendrocyte differentiation in primary oligodendrocyte precursors. Oligodendrocytic differentiation feedback loops may therefore yield pharmacological targets to treat disease related to dysfunctional myelin deposition.


Subject(s)
Cell Differentiation/physiology , Gene Regulatory Networks , Oligodendroglia/physiology , Signal Transduction/physiology , Animals , Cell Differentiation/drug effects , Cells, Cultured , Colforsin/pharmacology , Dexamethasone/pharmacology , Dual-Specificity Phosphatases/antagonists & inhibitors , Dual-Specificity Phosphatases/physiology , Gene Silencing , Genome-Wide Association Study , Mice , Myelin Basic Protein/biosynthesis , Neurogenesis/physiology , Oligodendroglia/cytology , Rats , Signal Transduction/drug effects , Tretinoin/pharmacology
3.
Proc Natl Acad Sci U S A ; 99(21): 13675-80, 2002 Oct 15.
Article in English | MEDLINE | ID: mdl-12364586

ABSTRACT

A map of 191 single-nucleotide polymorphism (SNPs) was built across a 5-Mb segment from chromosome 13q34 that has been genetically linked to schizophrenia. DNA from 213 schizophrenic patients and 241 normal individuals from Canada were genotyped with this marker set. Two 1,400- and 65-kb regions contained markers associated with the disease. Two markers from the 65-kb region were also found to be associated to schizophrenia in a Russian sample. Two overlapping genes G72 and G30 transcribed in brain were experimentally annotated in this 65-kb region. Transfection experiments point to the existence of a 153-aa protein coded by the G72 gene. This protein is rapidly evolving in primates, is localized to endoplasmic reticulum/Golgi in transfected cells, is able to form multimers and specifically binds to carbohydrates. Yeast two-hybrid experiments with the G72 protein identified the enzyme d-amino acid oxidase (DAAO) as an interacting partner. DAAO is expressed in human brain where it oxidizes d-serine, a potent activator of N-methyl-D-aspartate type glutamate receptor. The interaction between G72 and DAAO was confirmed in vitro and resulted in activation of DAAO. Four SNP markers from DAAO were found to be associated with schizophrenia in the Canadian samples. Logistic regression revealed genetic interaction between associated SNPs in vicinity of two genes. The association of both DAAO and a new gene G72 from 13q34 with schizophrenia together with activation of DAAO activity by a G72 protein product points to the involvement of this N-methyl-d-aspartate receptor regulation pathway in schizophrenia.


Subject(s)
D-Amino-Acid Oxidase/genetics , Schizophrenia/genetics , Schizophrenia/physiopathology , Amino Acid Sequence , Case-Control Studies , Chromosome Mapping , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Human, Pair 13/genetics , Cloning, Molecular , D-Amino-Acid Oxidase/metabolism , Enzyme Activation , Genetic Markers , Humans , In Vitro Techniques , Molecular Sequence Data , Polymorphism, Single Nucleotide , Receptors, N-Methyl-D-Aspartate/genetics , Sequence Homology, Amino Acid , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...