Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Diagnostics (Basel) ; 13(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37627907

ABSTRACT

Acute Kidney Injury (AKI) is currently recognized as a life-threatening disease, leading to an exponential increase in morbidity and mortality worldwide. At present, AKI is characterized by a significant increase in serum creatinine (SCr) levels, typically followed by a sudden drop in glomerulus filtration rate (GFR). Changes in urine output are usually associated with the renal inability to excrete urea and other nitrogenous waste products, causing extracellular volume and electrolyte imbalances. Several molecular mechanisms were proposed to be affiliated with AKI development and progression, ultimately involving renal epithelium tubular cell-cycle arrest, inflammation, mitochondrial dysfunction, the inability to recover and regenerate proximal tubules, and impaired endothelial function. Diagnosis and prognosis using state-of-the-art clinical markers are often late and provide poor outcomes at disease onset. Inappropriate clinical assessment is a strong disease contributor, actively driving progression towards end stage renal disease (ESRD). Proteins, as the main functional and structural unit of the cell, provide the opportunity to monitor the disease on a molecular level. Changes in the proteomic profiles are pivotal for the expression of molecular pathways and disease pathogenesis. Introduction of highly-sensitive and innovative technology enabled the discovery of novel biomarkers for improved risk stratification, better and more cost-effective medical care for the ill patients and advanced personalized medicine. In line with those strategies, this review provides and discusses the latest findings of proteomic-based biomarkers and their prospective clinical application for AKI management.

3.
Cancers (Basel) ; 14(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35454901

ABSTRACT

There is a clinical need to improve assessment of biopsy-naïve patients for the presence of clinically significant prostate cancer (PCa). In this study, we investigated whether the robust integration of expression data from urinary extracellular vesicle RNA (EV-RNA) with urine proteomic metabolites can accurately predict PCa biopsy outcome. Urine samples collected within the Movember GAP1 Urine Biomarker study (n = 192) were analysed by both mass spectrometry-based urine-proteomics and NanoString gene-expression analysis (167 gene-probes). Cross-validated LASSO penalised regression and Random Forests identified a combination of clinical and urinary biomarkers for predictive modelling of significant disease (Gleason Score (Gs) ≥ 3 + 4). Four predictive models were developed: 'MassSpec' (CE-MS proteomics), 'EV-RNA', and 'SoC' (standard of care) clinical data models, alongside a fully integrated omics-model, deemed 'ExoSpec'. ExoSpec (incorporating four gene transcripts, six peptides, and two clinical variables) is the best model for predicting Gs ≥ 3 + 4 at initial biopsy (AUC = 0.83, 95% CI: 0.77−0.88) and is superior to a standard of care (SoC) model utilising clinical data alone (AUC = 0.71, p < 0.001, 1000 resamples). As the ExoSpec Risk Score increases, the likelihood of higher-grade PCa on biopsy is significantly greater (OR = 2.8, 95% CI: 2.1−3.7). The decision curve analyses reveals that ExoSpec provides a net benefit over SoC and could reduce unnecessary biopsies by 30%.

4.
Cancers (Basel) ; 13(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34359689

ABSTRACT

Hepatocellular carcinoma (HCC) is known to be associated with protein alterations and extracellular fibrous deposition. We investigated the urinary proteomic profiles of HCC patients in this prospective cross sectional multicentre study. 195 patients were recruited from the UK (Coventry) and Germany (Hannover) between 1 January 2013 and 30 June 2019. Out of these, 57 were HCC patients with a background of liver cirrhosis (LC) and 138 were non-HCC controls; 72 patients with LC, 57 with non-cirrhotic liver disease and 9 with normal liver function. Analysis of the urine samples was performed by capillary electrophoresis (CE) coupled to mass spectrometry (MS). Peptide sequences were obtained and 31 specific peptide markers for HCC were identified and further integrated into a multivariate classification model. The peptide model demonstrated 79.5% sensitivity and 85.1% specificity (95% CI: 0.81-0.93, p < 0.0001) for HCC and 4.1-fold increased risk of death (95% CI: 1.7-9.8, p = 0.0005). Proteases potentially involved in HCC progression were mapped to the N- and C-terminal sequence motifs of the CE-MS peptide markers. In silico protease prediction revealed that kallikrein-6 (KLK6) elicits increased activity, whilst Meprin A subunit α (MEP1A) has reduced activity in HCC compared to the controls. Tissue expression of KLK6 and MEP1A was subsequently verified by immunohistochemistry.

5.
Nephrol Dial Transplant ; 36(5): 811-818, 2021 04 26.
Article in English | MEDLINE | ID: mdl-31837226

ABSTRACT

BACKGROUND: The urinary proteomic classifier chronic kidney disease 273 (CKD273) is predictive for the development and progression of chronic kidney disease (CKD) and/or albuminuria in type 2 diabetes. This study evaluates its role in the prediction of cardiovascular (CV) events in patients with CKD Stages G1-G5. METHODS: We applied the CKD273 classifier in a cohort of 451 patients with CKD Stages G1-G5 followed prospectively for a median of 5.5 years. Primary endpoints were all-cause mortality, CV mortality and the composite of non-fatal and fatal CV events (CVEs). RESULTS: In multivariate Cox regression models adjusting for age, sex, prevalent diabetes and CV history, the CKD273 classifier at baseline was significantly associated with total mortality and time to fatal or non-fatal CVE, but not CV mortality. Because of a significant interaction between CKD273 and CV history (P = 0.018) and CKD stages (P = 0.002), a stratified analysis was performed. In the fully adjusted models, CKD273 classifier was a strong and independent predictor of fatal or non-fatal CVE only in the subgroup of patients with CKD Stages G1-G3b and without a history of CV disease. In those patients, the highest tertile of CKD273 was associated with a >10-fold increased risk as compared with the lowest tertile. CONCLUSIONS: The urinary CKD273 classifier provides additional independent information regarding the CV risk in patients with early CKD stage and a blank CV history. Determination of CKD273 scores on a random urine sample may improve the efficacy of intensified surveillance and preventive strategies by selecting patients who potentially will benefit most from early risk management.


Subject(s)
Proteomics , Adult , Aged , Albuminuria/urine , Cardiovascular Diseases/complications , Cohort Studies , Diabetes Mellitus, Type 2/complications , Humans , Male , Middle Aged , Renal Insufficiency, Chronic/complications
6.
Proteomics Clin Appl ; 15(1): e2000029, 2021 01.
Article in English | MEDLINE | ID: mdl-32618437

ABSTRACT

PURPOSE: The peptidomes of spent hemodialysate, urine, and plasma are investigated, to shed light on peptide handling in the kidney. EXPERIMENTAL DESIGN: Fifteen plasma, 15 urine, and 13 spent hemodialysate samples are collected from age- and sex-matched subjects with chronic kidney disease. Peptide identification and quantification are performed with capillary electrophoresis-coupled mass spectrometry. RESULTS: A total of 6278 urinary peptides, 1743 plasma peptides, and 1727 peptides from spent hemodialysate are detected. Of these, sequences can be assigned to 1580, 419, and 352 peptides, respectively. A strong correlation in peptide abundance between urine and spent hemodialysate (p = 3 × 10-21 , Rho = 0.52), a moderately strong correlation between spent hemodialysate and plasma (p = 4.5 × 10-5 , Rho = 0.30), and no significant correlation between urine and plasma (p = 0.11, Rho = 0.094) are found. Collagen and fibrinogen alpha peptides are highly abundant in all three body fluids. In spent hemodialysate, thymosin ß4 is one of the most abundant peptides, which is shown to be negatively associated with the estimated glomerular filtration rate (Rho = -0.39, p-value = 3.9 × 10-81 ). CONCLUSION AND CLINICAL RELEVANCE: The correlation of peptide abundance in these three body fluids is lower than expected, supporting the hypothesis that tubular reabsorption has a major impact on urinary peptide content. Further investigation of thymosin ß4 in hemodialysis is thus warranted.


Subject(s)
Dialysis Solutions/chemistry , Peptides/blood , Peptides/urine , Adult , Glomerular Filtration Rate , Humans , Male
7.
EBioMedicine ; 62: 103083, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33160210

ABSTRACT

BACKGROUND: Liver fibrosis is a consequence of chronic inflammation and is associated with protein changes within the hepatocytes structure. In this study, we aimed to investigate if this is reflected by the urinary proteome and can be explored to diagnose liver fibrosis in patients with chronic liver disease. METHODS: In a multicentre combined cross-sectional and prospective diagnostic test validation study, 129 patients with varying degrees of liver fibrosis and 223 controls without liver fibrosis were recruited. Additionally, 41 patients with no liver, but kidney fibrosis were included to evaluate interference with expressions of kidney fibrosis. Urinary low molecular weight proteome was analysed by capillary electrophoresis coupled to mass spectrometry (CE-MS) and a support vector machine marker model was established by integration of peptide markers for liver fibrosis. FINDINGS: CE-MS enabled identification of 50 urinary peptides associated with liver fibrosis. When combined into a classifier, LivFib-50, it separated patients with liver fibrosis (N = 31) from non-liver disease controls (N = 123) in cross-sectional diagnostic phase II evaluation with an area under the curve (AUC) of 0.94 (95% confidence intervals (CI): 0.89-0.97, p<0.0001). When adjusted for age, LivFib-50 demonstrated an AUC of 0.94 (95% CI: 0.89-0.97, p<0.0001) in chronic liver disease patients with (N = 19) or without (N = 17) liver fibrosis progression. In this prospective diagnostic phase III validation set, age-adjusted LivFib-50 showed 84.2% sensitivity (95% CI: 60.4-96.6) and 82.4% specificity (95% CI: 56.6-96.2) for detection of liver fibrosis. The sequence-identified peptides are mainly fragments of collagen chains, uromodulin and Na/K-transporting ATPase subunit γ. We also identified ten putative proteolytic cleavage sites, eight were specific for matrix metallopeptidases and two for cathepsins. INTERPRETATION: In liver fibrosis, urinary peptides profiling offers potential diagnostic markers and leads to discovery of proteolytic sites that could be targets for developing anti-fibrotic therapy.


Subject(s)
Biomarkers/urine , Liver Cirrhosis/diagnosis , Liver Cirrhosis/urine , Peptides/urine , Adolescent , Adult , Aged , Area Under Curve , Cross-Sectional Studies , Data Analysis , Electrophoresis, Capillary , Female , Fibrosis , Humans , Liver Cirrhosis/etiology , Male , Mass Spectrometry , Middle Aged , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Sensitivity and Specificity , Support Vector Machine , Young Adult
9.
J Biomed Sci ; 27(1): 13, 2020 Jan 03.
Article in English | MEDLINE | ID: mdl-31900160

ABSTRACT

BACKGROUND: Detection of cholangiocarcinoma (CCA) remains a diagnostic challenge. We established diagnostic peptide biomarkers in bile and urine based on capillary electrophoresis coupled to mass spectrometry (CE-MS) to detect both local and systemic changes during CCA progression. In a prospective cohort study we recently demonstrated that combined bile and urine proteome analysis could further improve diagnostic accuracy of CCA diagnosis in patients with unknown biliary strictures. As a continuation of these investigations, the aim of the present study was to investigate the pathophysiological mechanisms behind the molecular determinants reflected by bile and urine peptide biomarkers. METHODS: Protease mapping and gene ontology cluster analysis were performed for the previously defined CE-MS based biomarkers in bile and urine. For that purpose, bile and urine peptide profiles (from samples both collected at the date of endoscopy) were investigated from a representative cohort of patients with benign (n = 76) or CCA-associated (n = 52) biliary strictures (verified during clinical follow-up). This was supplemented with a literature search for the association of the individual biomarkers included in the proteomic patterns with CCA or cancer progression. RESULTS: For most of the peptide markers, association to CCA has been described in literature. Protease mapping revealed ADAMTS4 activity in cleavage of both bile and urine CCA peptide biomarkers. Furthermore, increased chymase activity in bile points to mast cell activation at the tumor site. Gene ontology cluster analysis indicates cellular response to chemical stimuli and stress response as local and extracellular matrix reorganization by tissue destruction and repair as systemic events. The analysis further supports that the mapped proteases are drivers of local and systemic events. CONCLUSIONS: The study supports connection of the CCA-associated peptide biomarkers to the molecular pathophysiology and indicates an involvement in epithelial-to-mesenchymal transition, generation of cancer-associated fibroblasts and activation of residual immune cells. Proteases, extracellular matrix components, inflammatory cytokines, proangiogenic, growth and vasoactive factors released from the tumor microenvironment are drivers of systemic early events during CCA progression.


Subject(s)
Bile/metabolism , Biomarkers, Tumor/genetics , Cholangiocarcinoma/genetics , Neoplasms/genetics , ADAMTS4 Protein/genetics , Adult , Aged , Biomarkers, Tumor/urine , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Cholangiocarcinoma/urine , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Male , Middle Aged , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/urine , Peptides/genetics , Peptides/urine , Proteomics/methods , Tumor Microenvironment/genetics
10.
Sci Rep ; 9(1): 7635, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31114012

ABSTRACT

Non-invasive tools stratifying bladder cancer (BC) patients according to the risk of relapse are urgently needed to guide clinical intervention. As a follow-up to the previously published study on CE-MS-based urinary biomarkers for BC detection and recurrence monitoring, we expanded the investigation towards BC patients with longitudinal data. Profiling datasets of BC patients with follow-up information regarding the relapse status were investigated. The peptidomics dataset (n = 98) was split into training and test set. Cox regression was utilized for feature selection in the training set. Investigation of the entire training set at the single peptide level revealed 36 peptides being strong independent prognostic markers of disease relapse. Those features were further integrated into a Random Forest-based model evaluating the risk of relapse for BC patients. Performance of the model was assessed in the test cohort, showing high significance in BC relapse prognosis [HR = 5.76, p-value = 0.0001, c-index = 0.64]. Urinary peptide profiles integrated into a prognostic model allow for quantitative risk assessment of BC relapse highlighting the need for its incorporation in prospective studies to establish its value in the clinical management of BC.


Subject(s)
Biomarkers, Tumor/urine , Peptides/urine , Urinary Bladder Neoplasms/urine , Aged , Female , Humans , Male , Middle Aged , Recurrence , Urinary Bladder Neoplasms/pathology
11.
Sci Rep ; 9(1): 2225, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30778115

ABSTRACT

Renal Cysts and Diabetes Syndrome (RCAD) is an autosomal dominant disorder caused by mutations in the HNF1B gene encoding for the transcriptional factor hepatocyte nuclear factor-1B. RCAD is characterized as a multi-organ disease, with a broad spectrum of symptoms including kidney abnormalities (renal cysts, renal hypodysplasia, single kidney, horseshoe kidneys, hydronephrosis), early-onset diabetes mellitus, abnormal liver function, pancreatic hypoplasia and genital tract malformations. In the present study, using capillary electrophoresis coupled to mass spectrometry (CE-MS), we investigated the urinary proteome of a pediatric cohort of RCAD patients and different controls to identify peptide biomarkers and obtain further insights into the pathophysiology of this disorder. As a result, 146 peptides were found to be associated with RCAD in 22 pediatric patients when compared to 22 healthy age-matched controls. A classifier based on these peptides was generated and further tested on an independent cohort, clearly discriminating RCAD patients from different groups of controls. This study demonstrates that the urinary proteome of pediatric RCAD patients differs from autosomal dominant polycystic kidney disease (PKD1, PKD2), congenital nephrotic syndrome (NPHS1, NPHS2, NPHS4, NPHS9) as well as from chronic kidney disease conditions, suggesting differences between the pathophysiology behind these disorders.


Subject(s)
Biomarkers , Central Nervous System Diseases/metabolism , Dental Enamel/abnormalities , Diabetes Mellitus, Type 2/metabolism , Kidney Diseases, Cystic/metabolism , Proteome , Proteomics , Adolescent , Biomarkers/urine , Central Nervous System Diseases/diagnosis , Central Nervous System Diseases/urine , Child , Child, Preschool , Dental Enamel/metabolism , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/urine , Diagnosis, Differential , Female , Humans , Kidney Diseases, Cystic/diagnosis , Kidney Diseases, Cystic/urine , Male , Mass Spectrometry , Peptides/urine , Phenotype , Proteomics/methods , Reproducibility of Results
12.
Proteomics Clin Appl ; 13(3): e1800111, 2019 05.
Article in English | MEDLINE | ID: mdl-30334612

ABSTRACT

PURPOSE: Urine is a rich source of potential biomarkers, including glycoproteins. Glycoproteomic analysis remains difficult due to the high heterogeneity of glycans. Nevertheless, recent advances in glycoproteomics software solutions facilitate glycopeptide identification and characterization. The aim is to investigate intact glycopeptides in the urinary peptide profiles of normal subjects using a novel PTM-centric software-Byonic. EXPERIMENTAL DESIGN: The urinary peptide profiles of 238 normal subjects, previously analyzed using CE-MS and CE-MS/MS and/or LC-MS/MS, are subjected to glycopeptide analysis. Additionally, glycopeptide distribution is assessed in a set of 969 patients with five different cancer types: bladder, prostate and pancreatic cancer, cholangiocarcinoma, and renal cell carcinoma. RESULTS: A total of 37 intact O-glycopeptides and 23 intact N-glycopeptides are identified in the urinary profiles of 238 normal subjects. Among the most commonly identified O-glycoproteins are Apolipoprotein C-III and insulin-like growth factor II, while titin among the N-glycoproteins. Further statistical analysis reveals that three O-glycopeptides and five N-glycopeptides differed significantly in their abundance among the different cancer types, comparing to normal subjects. CONCLUSIONS AND CLINICAL RELEVANCE: Through the established glycoproteomics workflow, intact O- and N-glycopeptides in human urine are identified and characterized, providing novel insights for further exploration of the glycoproteome with respect to specific diseases.


Subject(s)
Glycopeptides/urine , Adolescent , Adult , Aged , Aged, 80 and over , Aging/urine , Biomarkers/urine , Female , Humans , Male , Middle Aged , Neoplasms/urine , Proteomics , Software , Young Adult
13.
Proteomics Clin Appl ; 12(5): e1700163, 2018 09.
Article in English | MEDLINE | ID: mdl-29611317

ABSTRACT

PURPOSE: Urine is considered to be produced predominantly as a result of plasma filtration in the kidney. However, the origin of the native peptides present in urine has never been investigated in detail. Therefore, the authors aimed to obtain a first insight into the origin of urinary peptides based on a side-by-side comprehensive analysis of the plasma and urine peptidome. METHODS: Twenty-two matched urine and plasma samples are analyzed for their peptidome using capillary electrophoresis coupled to mass spectrometry (CE-MS; for relative quantification) and CE or LC coupled to tandem mass spectrometry (CE- or LC-MS/MS; for peptide identification). The overlap and association of abundance of the different peptides present in these two body fluids are evaluated. RESULTS: The authors are able to identify 561 plasma and 1461 urinary endogenous peptides. Only 90 peptides are detectable in both urine and plasma. No significant correlation is found when comparing the abundance of these common peptides, with the exception of collagen fragments. This observation is also supported when comparing published peptidome data from both plasma and urine. CONCLUSIONS AND CLINICAL RELEVANCE: Most of the plasma peptides are not detectable in urine, possibly due to tubular reabsorption. The majority of urinary peptides may in fact originate in the kidney. The notable exception is collagen fragments, which indicates potential selective exclusion of these peptides from tubular reabsorption. Experimental verification of this hypothesis is warranted.


Subject(s)
Kidney/metabolism , Peptides , Proteome/genetics , Proteomics , Chromatography, Liquid , Humans , Kidney/pathology , Peptides/blood , Peptides/urine , Tandem Mass Spectrometry
14.
Sci Rep ; 8(1): 5584, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29615724

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the development of kidney cysts leading to kidney failure in adulthood. Inhibition of mammalian target of rapamycin (mTOR) slows polycystic kidney disease (PKD) progression in animal models, but randomized controlled trials failed to prove efficacy of mTOR inhibitor treatment. Here, we demonstrate that treatment with mTOR inhibitors result in the removal of negative feedback loops and up-regulates pro-proliferative phosphatidylinositol 3-kinase (PI3K)-Akt and PI3K-extracellular signal-regulated kinase (ERK) signaling in rat and mouse PKD models. Dual mTOR/PI3K inhibition with NVP-BEZ235 abrogated these pro-proliferative signals and normalized kidney morphology and function by blocking proliferation and fibrosis. Our findings suggest that multi-target PI3K/mTOR inhibition may represent a potential treatment for ADPKD.


Subject(s)
Phosphoinositide-3 Kinase Inhibitors , Polycystic Kidney, Autosomal Dominant/drug therapy , Protein Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Feedback, Physiological/drug effects , Polycystic Kidney, Autosomal Dominant/metabolism , Protein Kinase Inhibitors/therapeutic use , Rats
15.
Semin Nephrol ; 38(1): 63-87, 2018 01.
Article in English | MEDLINE | ID: mdl-29291763

ABSTRACT

Acute kidney injury (AKI) is a severe and frequent condition in hospitalized patients. Currently, no efficient therapy of AKI is available. Therefore, efforts focus on early prevention and potentially early initiation of renal replacement therapy to improve the outcome in AKI. The detection of AKI in hospitalized patients implies the need for early, accurate, robust, and easily accessible biomarkers of AKI evolution and outcome prediction because only a narrow window exists to implement the earlier-described measures. Even more challenging is the multifactorial origin of AKI and the fact that the changes of molecular expression induced by AKI are difficult to distinguish from those of the diseases associated or causing AKI as shock or sepsis. During the past decade, a considerable number of protein biomarkers for AKI have been described and we expect from recent advances in the field of omics technologies that this number will increase further in the future and be extended to other sorts of biomolecules, such as RNAs, lipids, and metabolites. However, most of these biomarkers are poorly defined by their AKI-associated molecular context. In this review, we describe the state-of-the-art tissue and biofluid proteomic and metabolomic technologies and new bioinformatics approaches for proteomic and metabolomic pathway and molecular interaction analysis. In the second part of the review, we focus on AKI-associated proteomic and metabolomic biomarkers and briefly outline their pathophysiological context in AKI.


Subject(s)
Acute Kidney Injury/diagnosis , Metabolomics , Proteomics , Adenosine Triphosphate/metabolism , Biomarkers/analysis , Computational Biology , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/blood , Humans , Transforming Growth Factor beta1/physiology
16.
Nephrol Dial Transplant ; 33(5): 751-759, 2018 05 01.
Article in English | MEDLINE | ID: mdl-28992073

ABSTRACT

Background: An improvement in the glomerular filtration rate (GFR) of chronic kidney disease patients has been an underestimated clinical outcome. Although this may be considered as an unexpected disease course, it may provide some insights into possible mechanisms underlying disease remission and/or regression. Therefore, our aim was to identify urinary peptide biomarkers associated with an improvement in estimated GFR (eGFR) over time and to improve patient stratification. Methods: Capillary electrophoresis coupled with mass spectrometry (CE-MS) was employed to evaluate the urine peptidome of patients with different types of renal diseases. In total, 376 patients with a slope/year between -1.5% and +1.5% were designated as non-progressors or stable, while 177 patients with a > 5% slope/year were designated as patients with an improved eGFR for state-of-art biomarker discovery and validation. Results: We detected 384 significant peptide fragments by comparing the CE-MS data of the stable patients and those with improved renal function in our development cohort. Of these 384, a set of 141 peptides with available amino acid sequence information were used to generate a support vector machine-based classification panel. The biomarker panel was applied to our validation cohort, achieving a moderate area under the curve (AUC) value of 0.85 (81% sensitivity and 81% specificity). The majority of the peptides (78%) from the diagnostic panel arose from different types of collagen. Conclusions: We have developed a panel of urinary peptide markers able to discriminate those patients predisposed to improve their kidney function over time and possibly be treated with more specific or less aggressive therapy.


Subject(s)
Biomarkers/urine , Glomerular Filtration Rate , Kidney/physiopathology , Peptide Fragments/urine , Proteome/analysis , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/urine , Cohort Studies , Disease Progression , Female , Humans , Male , Middle Aged , ROC Curve
17.
Sci Rep ; 7(1): 16915, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29208969

ABSTRACT

Chronic kidney disease (CKD) is a prevalent cause of morbidity and mortality worldwide. A hallmark of CKD progression is renal fibrosis characterized by excessive accumulation of extracellular matrix (ECM) proteins. In this study, we aimed to investigate the correlation of the urinary proteome classifier CKD273 and individual urinary peptides with the degree of fibrosis. In total, 42 kidney biopsies and urine samples were examined. The percentage of fibrosis per total tissue area was assessed in Masson trichrome stained kidney tissues. The urinary proteome was analysed by capillary electrophoresis coupled to mass spectrometry. CKD273 displayed a significant and positive correlation with the degree of fibrosis (Rho = 0.430, P = 0.0044), while the routinely used parameters (glomerular filtration rate, urine albumin-to-creatinine ratio and urine protein-to-creatinine ratio) did not (Rho = -0.222; -0.137; -0.070 and P = 0.16; 0.39; 0.66, respectively). We identified seven fibrosis-associated peptides displaying a significant and negative correlation with the degree of fibrosis. All peptides were collagen fragments, suggesting that these may be causally related to the observed accumulation of ECM in the kidneys. CKD273 and specific peptides are significantly associated with kidney fibrosis; such an association could not be detected by other biomarkers for CKD. These non-invasive fibrosis-related biomarkers can potentially be implemented in future trials.


Subject(s)
Fibrosis/pathology , Kidney/pathology , Liquid Biopsy/methods , Peptides/urine , Renal Insufficiency, Chronic/pathology , Adult , Collagen/urine , Electrophoresis, Capillary , Female , Fibrosis/urine , Humans , Male , Mass Spectrometry , Middle Aged , Renal Insufficiency, Chronic/urine
18.
Kidney Int Rep ; 2(5): 811-820, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28920100

ABSTRACT

INTRODUCTION: Sequencing peptides included in the urinary proteome identifies the parent proteins and may reveal mechanisms underlying the pathophysiology of chronic kidney disease. METHODS: In 805 randomly recruited Flemish individuals (50.8% women; mean age, 51.1 years), we determined the estimated glomerular filtration rate (eGFR) from serum creatinine using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. We categorized eGFR according to the National Kidney Foundation Kidney Disease Outcomes Quality Initiative guideline. We analyzed 74 sequenced urinary peptides with a detectable signal in more than 95% of participants. Follow-up measurements of eGFR were available in 597 participants. RESULTS: In multivariable analyses, baseline eGFR decreased (P ≤ 0.022) with urinary fragments of mucin-1 (standardized association size expressed in ml/min/1.73 m2, -4.48), collagen III (-2.84), and fibrinogen (-1.70) and was bi-directionally associated (P ≤ 0.0006) with 2 urinary collagen I fragments (+2.28 and -3.20). The eGFR changes over 5 years (follow-up minus baseline) resulted in consistent estimates (P ≤ 0.025) for mucin-1 (-1.85), collagen (-1.37 to 1.43) and fibrinogen (-1.45) fragments. Relative risk of having or progressing to eGFR <60 ml/min/1.73 m2 was associated with mucin-1. Partial least-squares analysis confirmed mucin-1 as the strongest urinary marker associated with decreased eGFR, with a score of 2.47 compared with 1.80 for a collagen I fragment as the next contender. Mucin-1 predicted eGFR decline to <60 ml/min/1.73 m2 over and above microalbuminuria (P = 0.011) and retained borderline significance (P = 0.05) when baseline eGFR was accounted for. DISCUSSION: In the general population, mucin-1 subunit α, an extracellular protein that is shed from renal tubular epithelium, is a novel biomarker associated with renal dysfunction.

19.
PLoS One ; 12(3): e0172036, 2017.
Article in English | MEDLINE | ID: mdl-28273075

ABSTRACT

Identification of individuals who are at risk of suffering from acute coronary syndromes (ACS) may allow to introduce preventative measures. We aimed to identify ACS-related urinary peptides, that combined as a pattern can be used as prognostic biomarker. Proteomic data of 252 individuals enrolled in four prospective studies from Australia, Europe and North America were analyzed. 126 of these had suffered from ACS within a period of up to 5 years post urine sampling (cases). Proteomic analysis of 84 cases and 84 matched controls resulted in the discovery of 75 ACS-related urinary peptides. Combining these to a peptide pattern, we established a prognostic biomarker named Acute Coronary Syndrome Predictor 75 (ACSP75). ACSP75 demonstrated reasonable prognostic discrimination (c-statistic = 0.664), which was similar to Framingham risk scoring (c-statistics = 0.644) in a validation cohort of 42 cases and 42 controls. However, generating by a composite algorithm named Acute Coronary Syndrome Composite Predictor (ACSCP), combining the biomarker pattern ACSP75 with the previously established urinary proteomic biomarker CAD238 characterizing coronary artery disease as the underlying aetiology, and age as a risk factor, further improved discrimination (c-statistic = 0.751) resulting in an added prognostic value over Framingham risk scoring expressed by an integrated discrimination improvement of 0.273 ± 0.048 (P < 0.0001) and net reclassification improvement of 0.405 ± 0.113 (P = 0.0007). In conclusion, we demonstrate that urinary peptide biomarkers have the potential to predict future ACS events in asymptomatic patients. Further large scale studies are warranted to determine the role of urinary biomarkers in clinical practice.


Subject(s)
Acute Coronary Syndrome/diagnosis , Peptides/urine , Proteome/analysis , Proteomics , Acute Coronary Syndrome/metabolism , Acute Coronary Syndrome/mortality , Acute Coronary Syndrome/urine , Age Factors , Aged , Area Under Curve , Biomarkers/urine , Case-Control Studies , Electrophoresis, Capillary , Female , Humans , Male , Mass Spectrometry , Middle Aged , Prognosis , ROC Curve , Risk Factors , Support Vector Machine , Survival Analysis
20.
PLoS One ; 12(2): e0166875, 2017.
Article in English | MEDLINE | ID: mdl-28199320

ABSTRACT

Ageing is a complex process characterised by a systemic and progressive deterioration of biological functions. As ageing is associated with an increased prevalence of age-related chronic disorders, understanding its underlying molecular mechanisms can pave the way for therapeutic interventions and managing complications. Animal models such as mice are commonly used in ageing research as they have a shorter lifespan in comparison to humans and are also genetically close to humans. To assess the translatability of mouse ageing to human ageing, the urinary proteome in 89 wild-type (C57BL/6) mice aged between 8-96 weeks was investigated using capillary electrophoresis coupled to mass spectrometry (CE-MS). Using age as a continuous variable, 295 peptides significantly correlated with age in mice were identified. To investigate the relevance of using mouse models in human ageing studies, a comparison was performed with a previous correlation analysis using 1227 healthy subjects. In mice and humans, a decrease in urinary excretion of fibrillar collagens and an increase of uromodulin fragments was observed with advanced age. Of the 295 peptides correlating with age, 49 had a strong homology to the respective human age-related peptides. These ortholog peptides including several collagen (N = 44) and uromodulin (N = 5) fragments were used to generate an ageing classifier that was able to discriminate the age among both wild-type mice and healthy subjects. Additionally, the ageing classifier depicted that telomerase knock-out mice were older than their chronological age. Hence, with a focus on ortholog urinary peptides mouse ageing can be translated to human ageing.


Subject(s)
Aging/urine , Models, Biological , Peptides/urine , Proteome/metabolism , Proteomics , Animals , Capillary Electrochromatography , Female , Humans , Male , Mass Spectrometry , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...