Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 107(9): 2070-81, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25418092

ABSTRACT

Biological membranes are organized into dynamic microdomains that serve as sites for signal transduction and membrane trafficking. The formation and expansion of these microdomains are driven by intrinsic properties of membrane lipids and integral as well as membrane-associated proteins. Annexin A2 (AnxA2) is a peripherally associated membrane protein that can support microdomain formation in a Ca(2+)-dependent manner and has been implicated in membrane transport processes. Here, we performed a quantitative analysis of the binding of AnxA2 to solid supported membranes containing the annexin binding lipids phosphatidylinositol-4,5-bisphosphate and phosphatidylserine in different compositions. We show that the binding is of high specificity and affinity with dissociation constants ranging between 22.1 and 32.2 nM. We also analyzed binding parameters of a heterotetrameric complex of AnxA2 with its S100A10 protein ligand and show that this complex has a higher affinity for the same membranes with Kd values of 12 to 16.4 nM. Interestingly, binding of the monomeric AnxA2 and the AnxA2-S100A10 complex are characterized by positive cooperativity. This cooperative binding is mediated by the conserved C-terminal annexin core domain of the protein and requires the presence of cholesterol. Together our results reveal for the first time, to our knowledge, that AnxA2 and its derivatives bind cooperatively to membranes containing cholesterol, phosphatidylserine, and/or phosphatidylinositol-4,5-bisphosphate, thus providing a mechanistic model for the lipid clustering activity of AnxA2.


Subject(s)
Annexin A2/metabolism , Cholesterol/metabolism , Lipid Bilayers/metabolism , Phosphatidylinositols/metabolism , Phosphatidylserines/metabolism , Adsorption , Annexin A2/genetics , Calcium/metabolism , Escherichia coli , Humans , S100 Proteins/genetics , S100 Proteins/metabolism
2.
J Biol Chem ; 288(34): 24764-76, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-23861394

ABSTRACT

The formation of dynamic membrane microdomains is an important phenomenon in many signal transduction and membrane trafficking events. It is driven by intrinsic properties of membrane lipids and integral as well as membrane-associated proteins. Here we analyzed the ability of one peripherally associated membrane protein, annexin A2 (AnxA2), to induce the formation of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-rich domains in giant unilamellar vesicles (GUVs) of complex lipid composition. AnxA2 is a cytosolic protein that can bind PI(4,5)P2 and other acidic phospholipids in a Ca(2+)-dependent manner and that has been implicated in cellular membrane dynamics in endocytosis and exocytosis. We show that AnxA2 binding to GUVs induces lipid phase separation and the recruitment of PI(4,5)P2, cholesterol and glycosphingolipids into larger clusters. This property is observed for the full-length monomeric protein, a mutant derivative comprising the C-terminal protein core domain and for AnxA2 residing in a heterotetrameric complex with its intracellular binding partner S100A10. All AnxA2 derivatives inducing PI(4,5)P2 clustering are also capable of forming interconnections between PI(4,5)P2-rich microdomains of adjacent GUVs. Furthermore, they can induce membrane indentations rich in PI(4,5)P2 and inward budding of these membrane domains into the lumen of GUVs. This inward vesiculation is specific for AnxA2 and not shared with other PI(4,5)P2-binding proteins such as the pleckstrin homology (PH) domain of phospholipase Cδ1. Together our results indicate that annexins such as AnxA2 can efficiently induce membrane deformations after lipid segregation, a mechanism possibly underlying annexin functions in membrane trafficking.


Subject(s)
Annexin A2/metabolism , Membrane Microdomains/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , S100 Proteins/metabolism , Annexin A2/chemistry , Annexin A2/genetics , Humans , Membrane Microdomains/chemistry , Membrane Microdomains/genetics , Membranes, Artificial , Phosphatidylinositol 4,5-Diphosphate/chemistry , Phosphatidylinositol 4,5-Diphosphate/genetics , Phospholipase C delta/chemistry , Phospholipase C delta/genetics , Phospholipase C delta/metabolism , S100 Proteins/chemistry , S100 Proteins/genetics
3.
Biol Chem ; 393(10): 1141-50, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23091277

ABSTRACT

Annexin A2 (AnxA2), a Ca2+-regulated phospholipid binding protein involved in membrane-cytoskeleton contacts and membrane transport, exists in two physical states, as a monomer or in a heterotetrameric complex mediated by S100A10. Formation of the AnxA2-S100A10 complex is of crucial regulatory importance because only the complex is firmly anchored in the plasma membrane, where it functions in the plasma membrane targeting/recruitment of certain ion channels and receptors. The S100A10 binding motif is located in the first 12 residues of the AnxA2 N-terminal domain, but conflicting reports exist as to the importance of N-terminal AnxA2 acetylation with regard to S100A10 binding. We show here that AnxA2 is subject to N-terminal modification when expressed heterologously in Escherichia coli. Met1 is removed and Ser2 is acetylated, yielding the same modification as the authentic mammalian protein. Bacterially expressed and N-terminally acetylated AnxA2 binds S100A10 with an affinity comparable to AnxA2 from porcine tissue and is capable of forming the AnxA2-S100A10 heterotetramer. Complex formation is competitively inhibited by acetylated but not by non-acetylated peptides covering the N-terminal AnxA2 sequence. These results demonstrate that N-terminal acetylation of AnxA2 is required for S100A10 binding and that this common eukaryotic modification is also obtained upon expression in bacteria.


Subject(s)
Annexin A2/chemistry , Annexin A2/metabolism , S100 Proteins/metabolism , Acetylation , Annexin A2/genetics , Escherichia coli/genetics , Humans , Protein Binding , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...