Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Geochem Geophys Geosyst ; 17(2): 410-424, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27587984

ABSTRACT

This paper focuses on constraining the erosion rate in the area of the Allchar Sb-As-Tl-Au deposit (Macedonia). It contains the largest known reserves of lorandite (TlAsS2), which is essential for the LORanditeEXperiment (LOREX), aimed at determining the long-term solar neutrino flux. Because the erosion history of the Allchar area is crucial for the success of LOREX, we applied terrestrial in situ cosmogenic nuclides including both radioactive (26Al and 36Cl) and stable (3He and 21Ne) nuclides in quartz, dolomite/calcite, sanidine, and diopside. The obtained results suggest that there is accordance in the values obtained by applying 26Al, 36Cl, and 21Ne for around 85% of the entire sample collection, with resulting erosion rates varying from several tens of m/Ma to ∼165 m/Ma. The samples from four locations (L-8 CD, L1b/R, L1c/R, and L-4/ADR) give erosion rates between 300 and 400 m/Ma. Although these localities reveal remarkably higher values, which may be explained by burial events that occurred in part of Allchar, the erosion rate estimates mostly in the range between 50 and 100 m/Ma. This range further enables us to estimate the vertical erosion rate values for the two main ore bodies Crven Dol and Centralni Deo. We also estimate that the lower and upper limits of average paleo-depths for the ore body Centralni Deo from 4.3 Ma to the present are 250-290 and 750-790 m, respectively, whereas the upper limit of paleo-depth for the ore body Crven Dol over the same geological age is 860 m. The estimated paleo-depth values allow estimating the relative contributions of 205Pb derived from pp-neutrino and fast cosmic-ray muons, respectively, which is an important prerequisite for the LOREX experiment.

2.
Sci Rep ; 5: 10650, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-26035297

ABSTRACT

Human mobility and social structure are at the basis of disease spreading. Disease containment strategies are usually devised from coarse-grained assumptions about human mobility. Cellular networks data, however, provides finer-grained information, not only about how people move, but also about how they communicate. In this paper we analyze the behavior of a large number of individuals in Ivory Coast using cellular network data. We model mobility and communication between individuals by means of an interconnected multiplex structure where each node represents the population in a geographic area (i.e., a sous-préfecture, a third-level administrative region). We present a model that describes how diseases circulate around the country as people move between regions. We extend the model with a concurrent process of relevant information spreading. This process corresponds to people disseminating disease prevention information, e.g., hygiene practices, vaccination campaign notices and other, within their social network. Thus, this process interferes with the epidemic. We then evaluate how restricting the mobility or using preventive information spreading process affects the epidemic. We find that restricting mobility does not delay the occurrence of an endemic state and that an information campaign might be an effective countermeasure.


Subject(s)
Communicable Disease Control , Information Dissemination , Models, Theoretical , Social Mobility , Algorithms , Communicable Disease Control/methods , Communicable Diseases/epidemiology , Computer Simulation , Epidemics , Humans
3.
J Biol Chem ; 273(49): 32393-9, 1998 Dec 04.
Article in English | MEDLINE | ID: mdl-9829968

ABSTRACT

The N-terminal extracellular region (amino acids 1-209) of the alpha-subunit of the nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata electric tissue was expressed as inclusion bodies in Escherichia coli using the pET 3a vector. Employing a novel protocol of unfolding and refolding, in the absence of detergent, a water-soluble globular protein of 25 kDa was obtained displaying approximately 15% alpha-helical and 45% beta-structure. The fragment bound alpha-[3H]bungarotoxin in 1:1 stoichiometry with a KD value of 0.5 nM as determined from kinetic measurements (4 nM from equilibrium binding). The kinetics of association of toxin and fragment were of second order, with a similar rate constant (8.2 x 10(5) M-1 s-1) as observed previously for the membrane-bound heteropentameric nAChR. Binding of small ligands was demonstrated by competition with alpha-[3H]bungarotoxin yielding the following KI values: acetylcholine, 69 microM; nicotine, 0.42 microM; anatoxin-a, 3 miroM; tubocurarine, 400 microM; and methyllycaconitine, 0.12 microM. The results demonstrate that the N-terminal extracellular region of the nAChR alpha-subunit forms a self-assembling domain that functionally expresses major elements of the ligand binding sites of the receptor.


Subject(s)
Receptors, Nicotinic/metabolism , Amino Acid Sequence , Animals , Bungarotoxins/metabolism , Cloning, Molecular , Escherichia coli/genetics , Molecular Sequence Data , Protein Binding , Protein Denaturation , Protein Folding , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Torpedo
SELECTION OF CITATIONS
SEARCH DETAIL
...