Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38068084

ABSTRACT

This study aimed to enhance the performance of Ag-stabilized high-temperature superconducting (HTS) tapes with a focus on reducing magnetization losses. Two approaches were employed: dividing the tapes into narrower widths and introducing striation at the level of the superconducting layer. The process of laser ablation proved to be an effective method for implementing these modifications. The quality of the cut edges and grooves was assessed using scanning electron microscopy. To evaluate the electrical properties, measurements were conducted on the critical current and magnetization loss in samples at different stages: in their initial state, after cutting, and after the striation process. Of the two modifications, the striation process more effectively reduced the AC losses in the HTS tapes, approximately by one order of magnitude. The retention of critical current remained high after cutting, but varied with the number of created filaments after the striation process. Subsequently, a short cable was wound from the cut and striated HTS tape. This cable demonstrated a remarkable sixfold reduction in AC losses compared to the initial HTS tape.

2.
Materials (Basel) ; 14(13)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206884

ABSTRACT

The strain behavior of SiC/Stycast 2850 FT composites under thermomechanical loading using a finite element analysis (FEA) was studied. These composites can serve as thermal stabilizers of high-temperature superconducting (HTS) tapes during limitation event in resistive superconducting fault current limiter (R-SCFCL) applications. For this purpose, the thermomechanical properties of four composite systems with different filler content were studied experimentally. The FEA was calculated using an ANSYS software and it delivered useful information about the strain distribution in the composite coating, as well as in particular layers of the modified HTS tapes. The tapes were subjected to bending over a 25 cm core, cooled in a liquid nitrogen (LN2) bath, and finally, quenched from this temperature to various temperatures up to 150 °C for a very short time, simulating real limitation conditions. The outputs from simulations were also correlated with the experiments. The most promising of all investigated systems was SB11-SiC20 composite in form of 100 µm thick coating, withstanding a temperature change from LN2 up to 120 °C.

3.
Materials (Basel) ; 14(4)2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33672390

ABSTRACT

We prepared overlap soldered joints of high-temperature superconducting tapes, using various materials and preparation conditions. In order to select the joints with optimal performance, we correlated their electrical properties (derived from current-voltage curves) with the microstructure of the respective joint cross-section by scanning electron microscopy. With the first group of joints, we focused on the effect of used materials on joint resistivity and critical current, and we found that the dominant role was played by the quality of the internal interfaces of the superconducting tape. Initial joint resistivities ranged in the first group from 41 to 341 nΩ·cm2. The second group of joints underwent a series of thermal cyclings, upon which the initial resistivity range of 35-49 nΩ·cm2 broadened to 25-128 nΩ·cm2. After the total of 135 thermal cycles, three out of four joints showed no signs of significant degradation. Within the limit of 100 thermal cycles, reliable soldered joints can be thus prepared, with normalized resistivity not exceeding 1.4 and with normalized critical current above the value of 0.85.

4.
Materials (Basel) ; 13(8)2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32294986

ABSTRACT

We enhanced the performance of superconducting tapes during quenching by coating the tapes with various composites, with regards to the application of such coated systems in superconducting fault current limiters. In composition of the coating, we varied the type of epoxy matrix, the content of ceramic filler particles and the use of reinforcement in order to optimize the thermal and the mechanical stability of the coated tapes. By this way modified superconducting tapes were able to reduce the maximum temperature 170 °C of not modified superconducting tape to 55 °C during the quench with electric field up to 130 V m-1.

5.
Article in English | MEDLINE | ID: mdl-16048192

ABSTRACT

Damage behavior of two different metallization systems (Ti/Al bilayer and Ta-Si-N/Cu/Ta-Si-N multilayer) as finger electrodes in surface acoustic waves (SAW) devices was investigated. A special test structure was developed for this reason. The samples were loaded with traveling SAWs varying input power and loading time. Simultaneously during these experiments, the electric behavior of the SAW structure was measured and damage development by voids and hillock formation was observed using optical microscopy, too. The damaged structures were investigated by means of different microscopy techniques. Results show that the Cu-based metallization system has a significantly higher acoustomigration resistance and power durability in comparison with the Al thin film system.

SELECTION OF CITATIONS
SEARCH DETAIL
...