Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-31186577

ABSTRACT

We present a new experimental setup devoted to the study of gas phase molecules and processes using broad band high spectral resolution rotational spectroscopy. A reactor chamber has been equipped with radio receivers similar to those used by radio astronomers to search for molecular emission in space. The whole Q (31.5-50 GHz) and W bands (72-116.5 GHz) are available for rotational spectroscopy observations. The receivers are equipped with 16×2.5 GHz Fast Fourier Transform spectrometers with a spectral resolution of 38.14 kHz allowing the simultaneous observation of the complete Q band and one third of the W band. The whole W band can be observed in three settings in which the Q band is always observed. Species such as CH3CN, OCS, and SO2 are detected, together with many of their isotopologues and vibrationally excited states, in very short observing times. The system permits automatic overnight observations and integration times as long as 2.4×105 seconds have been reached. The chamber is equipped with a radiofrequency source to produce cold plasmas and with four ultraviolet lamps to study photochemical processes. Plasmas of CH4, N2, CH3CN, NH3, O2, and H2, among other species, have been generated and the molecular products easily identified by their rotational spectrum, and mass spectrometry and optical spectroscopy. Finally, the rotational spectrum of the lowest energy conformer of CH3CH2NHCHO (N-Ethylformamide), a molecule previously characterized in microwave rotational spectroscopy, has been measured up to 116.5 GHz allowing the accurate determination of its rotational and distortion constants and its search in space.

2.
Astrophys J ; 861(1)2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30185993

ABSTRACT

Methyl isocyanate (CH3NCO) was recently found in hot cores and suggested on comet 67P/CG. The incorporation of this molecule into astrochemical networks requires data on its formation and destruction. In this work, ices of pure CH3NCO and of CH3NCO(4-5%)/H2O mixtures deposited at 20 K were irradiated with a UV D2 lamp (120-400 nm) and bombarded by 5 keV electrons to mimic the secondary electrons produced by cosmic rays (CRs). The destruction of CH3NCO was studied using IR spectroscopy. After processing, the νa-NCO band of CH3NCO disappeared and IR bands corresponding to CO, CO2, OCN- and HCN/CN- appeared instead. The products of photon and electron processing were very similar. Destruction cross sections and half-life doses were derived from the measurements. Water ice provides a good shield against UV irradiation (half-life dose of ~ 64 eV molecule-1 for CH3NCO in water-ice), but not so good against high-energy electrons (half-life dose ~ 18 eV molecule-1). It was also found that CH3NCO does not react with H2O over the 20-200 K temperature range. These results indicate that hypothetical CH3NCO in the ices of dense clouds should be stable against UV photons and relatively stable against CRs over the lifetime of a cloud (~ 107 yr), and could sublime in the hot core phase. On the surface of a Kuiper belt object (the original location of comet 67P/CG) the molecule would be swiftly destroyed, both by photons and CRs, but embedded below just 10 µm of water-ice, the molecule could survive for ~ 109 yr.

3.
Plasma Sources Sci Technol ; 27: 035007, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29983483

ABSTRACT

Interstellar (IS) dust analogs, based on amorphous hydrogenated carbon (a-C:H) were generated by plasma deposition in RF discharges of CH4 + He mixtures. The a-C:H samples were characterized by means of secondary electron microscopy (SEM), infrared (IR) spectroscopy and UV-visible reflectivity. DFT calculations of structure and IR spectra were also carried out. From the experimental data, atomic compositions were estimated. Both IR and reflectivity measurements led to similar high proportions (≈ 50%) of H atoms, but there was a significant discrepancy in the sp2/sp3 hybridization ratios of C atoms (sp2/sp3 = 1.5 from IR and 0.25 from reflectivity). Energetic processing of the samples with 5 keV electrons led to a decay of IR aliphatic bands and to a growth of aromatic bands, which is consistent with a dehydrogenation and graphitization of the samples. The decay of the CH aliphatic stretching band at 3.4 µm upon electron irradiation is relatively slow. Estimates based on the absorbed energy and on models of cosmic ray (CR) flux indicate that CR bombardment is not enough to justify the observed disappearance of this band in dense IS clouds.

4.
Sci Rep ; 8(1): 7250, 2018 May 08.
Article in English | MEDLINE | ID: mdl-29740027

ABSTRACT

The increasing demand for nanostructured materials is mainly motivated by their key role in a wide variety of technologically relevant fields such as biomedicine, green sustainable energy or catalysis. We have succeeded to scale-up a type of gas aggregation source, called a multiple ion cluster source, for the generation of complex, ultra-pure nanoparticles made of different materials. The high production rates achieved (tens of g/day) for this kind of gas aggregation sources, and the inherent ability to control the structure of the nanoparticles in a controlled environment, make this equipment appealing for industrial purposes, a highly coveted aspect since the introduction of this type of sources. Furthermore, our innovative UHV experimental station also includes in-flight manipulation and processing capabilities by annealing, acceleration, or interaction with background gases along with in-situ characterization of the clusters and nanoparticles fabricated. As an example to demonstrate some of the capabilities of this new equipment, herein we present the fabrication of copper nanoparticles and their processing, including the controlled oxidation (from Cu0 to CuO through Cu2O, and their mixtures) at different stages in the machine.

5.
Astron Astrophys ; 6092018 Jan.
Article in English | MEDLINE | ID: mdl-29277841

ABSTRACT

We present a proof of concept on the coupling of radio astronomical receivers and spectrometers with chemical reactors and the performances of the resulting setup for spectroscopy and chemical simulations in laboratory astrophysics. Several experiments including cold plasma generation and UV photochemistry were performed in a 40 cm long gas cell placed in the beam path of the Aries 40 m radio telescope receivers operating in the 41-49 GHz frequency range interfaced with fast Fourier transform spectrometers providing 2 GHz bandwidth and 38 kHz resolution. The impedance matching of the cell windows has been studied using different materials. The choice of the material and its thickness was critical to obtain a sensitivity identical to that of standard radio astronomical observations. Spectroscopic signals arising from very low partial pressures of CH3OH, CH3CH2OH, HCOOH, OCS, CS, SO2 (<10-3 mbar) were detected in a few seconds. Fast data acquisition was achieved allowing for kinetic measurements in fragmentation experiments using electron impact or UV irradiation. Time evolution of chemical reactions involving OCS, O2 and CS2 was also observed demonstrating that reactive species, such as CS, can be maintained with high abundance in the gas phase during these experiments.

6.
Nanotechnology ; 28(17): 175709, 2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28278132

ABSTRACT

The aging of supported Ag nanostructures upon storage in ambient conditions (air and room temperature) for 20 months has been studied. The samples are produced on glass substrates by pulsed laser deposition (PLD); first a 15 nm thick buffer layer of amorphous aluminum oxide (a-Al2O3) is deposited, followed by PLD of Ag. The amount of deposited Ag ranges from that leading to a discontinuous layer up to an almost-percolated layer with a thickness of <6 nm. Some regions of the as-grown silver layers are converted, by laser induced dewetting, into round isolated nanoparticles (NPs) with diameters of up to ∼25 nm. The plasmonic, structural and chemical properties of both as-grown and laser exposed regions upon aging have been followed using extinction spectroscopy, scanning electron microscopy and x-ray photoelectron spectroscopy, respectively. The results show that the discontinuous as-grown regions are optically and chemically unstable and that the metal becomes oxidized faster, the smaller the amount of Ag. The corrosion leads to the formation of nitrile species due to the reaction between NO x species from the atmosphere adsorbed at the surface of Ag, and hydrocarbons adsorbed in defects at the surface of the a-Al2O3 layer during the deposition of the Ag nanostructures by PLD that migrate to the surface of the metal with time. The nitrile formation thus results in the main oxidation mechanism and inhibits almost completely the formation of sulphate/sulphide. Finally, the optical changes upon aging offer an easy-to-use tool for following the aging process. They are dominated by an enhanced absorption in the UV side of the spectrum and a blue-shift of the surface plasmon resonance that are, respectively, related to the formation of a dielectric overlayer on the Ag nanostructure and changes in the dimensions/features of the nanostructures, both due to the oxidation process.

7.
Nanotechnology ; 27(10): 105301, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26866902

ABSTRACT

This work explores a cost-effective route to enhance the tuning range of the optical response of metal nanostructures on substrates beyond the ranges that are achievable through the nanostructure dimensions, composition or dewetting processes. The new route (laser seeding) uses single nanosecond laser pulses to induce dewetting in regions of a metal layer deposited on a glass substrate followed by the deposition of a second metal layer, both layers being deposited by pulsed laser deposition. In order to show the possibilities of this new route, we have chosen that the two metals were different, namely Ag and Au. The comparison of the optical response of these regions to those that were laser irradiated after deposition of the second metal layer shows that while nanoalloyed nanoparticles (NPs) are formed in the latter case, the NPs produced in the former case have a heterogeneous structure. The interface between the two metals is either sharp or a narrow region where they have mixed depending on the laser fluence used. While the nanoalloyed NPs exhibit a single, narrow surface plasmon resonance (SPR), the heterogeneous NPs show broader SPRs that peak in the near infrared and depending on conditions exhibit even two clear SPRs. The laser seeding approach in the conditions used in this work allows for the expansion of the tuning range of the color to the blue-green region, i.e. beyond the region that can be achieved through nanoalloyed NPs (yellow-red region). In addition, the results presented foresee the laser seeding route as a means to produce round and almost isolated NPs in an enhanced range of diameters.

8.
Nanotechnology ; 26(25): 255301, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-26031245

ABSTRACT

Fringed periodic patterns have been produced by laser interference at 193 nm in an almost continuous 9.5 nm-thick Ag film that exhibits a number density of ≈189 µm(-2) holes. Patterns with four periods in the range of 1.8-10.2 µm were produced by changing the projection optics. At high fluences, the film breaks up into nanostructures around the regions exposed to intensity maxima due to laser-induced melting. At low fluences, a new process is observed that is triggered at the initial holes of the film by solid-state dewetting. Once the fluence is high enough to prevent the temperature balance across the pattern, mass transport from cold to hot regions is observed, leading to film densification in regions around intensity maxima sites. The novel patterns are thus formed by fringes of material that is more/less dense than the as-grown film, each of which is located at intensity maxima/minima sites, and have negligible topography. Comparing the present results to earlier reports in the literature shows that the thermal gradient across the pattern is influenced by the initial film microstructure, rather than by the thickness. The existence of a minimum period, which is achievable depending on the thermal continuity of the film, is also discussed.

9.
Nanotechnology ; 26(1): 015302, 2015 Jan 09.
Article in English | MEDLINE | ID: mdl-25490086

ABSTRACT

Periodic fringed patterns with four periods in the range 1.8-10.2 µm have been produced in continuous Ag films that have thicknesses of 14.6 nm and 19.5 nm by exposing a phase mask to single pulses of an excimer laser operating at 193 nm. The films were patterned either as-grown or after homogeneous exposure to the same laser beam. For fluences above the threshold, the films undergo liquid-state dewetting that, from low to high fluences, leads to their break into holes, fingers or elongated features and finally to isolated nanoparticles irrespective of the period, thickness or fluence. The period determines the range of fluences to achieve the different morphologies since the temperature profile across the pattern depends on the period due to the existence of significant lateral heat flow across the pattern. The maximum temperature achieved at the intensity maxima/minima sites thus decreases/increases as the period decreases, leading to solid-state dewetting at regions around the intensity minima; the shorter the period, the higher this type of dewetting. These regions eventually overcome the melting temperature for the shortest period and intermediate fluence, leading to the complete transformation of the films. Finally, the initial film morphology (discontinuities or holes) rather than thickness plays an essential role in the level of transformation at fluences around the threshold.

10.
Nanotechnology ; 24(36): 365702, 2013 Sep 13.
Article in English | MEDLINE | ID: mdl-23942355

ABSTRACT

Pairs of samples containing Ag nanoparticles (NPs) of different dimensions have been produced under the same conditions but on different substrates, namely standard glass slides and a thin layer of amorphous aluminum oxide (a-Al2O3) on-glass. Upon storage in ambient conditions (air and room temperature) the color of samples changed and a blue-shift and damping of the surface plasmon resonance was observed. The changes are weaker for the samples on-glass and tend to saturate after 12 months. In contrast, the changes for the samples on a-Al2O3 appear to be still progressing after 25 months. While x-ray photoelectron spectroscopy shows a slight sulfurization and negligible oxidation of the Ag for the on-glass samples upon 25 months aging, it shows that Ag is strongly oxidized for the on a-Al2O3 samples and sulfurization is negligible. Both optical and chemical results are consistent with the production of a shell at the expense of a reduction of the metal core dimensions, the latter being responsible for the blue-shift and related to the small (<10 nm initial diameter) of the NPs. The enhanced reactivity of the Ag NPs on the a-Al2O3 supports goes along with specific morphological changes of the Ag NPs and the observation of nitrogen.

11.
Nanotechnology ; 24(9): 095301, 2013 Mar 08.
Article in English | MEDLINE | ID: mdl-23403869

ABSTRACT

The aim of this work is to produce 2D plasmonic and diffractive structures in Ag films with sharp features for which both a deeper understanding of laser induced transformation upon modulated laser intensity and a correlation between structural and optical properties are required. We compare results obtained by exposing silver films to an excimer laser operating at 193 nm whose intensity is either modulated or homogeneous. In all cases, one laser exposure is enough to break the film into nanoparticles (NPs). The use of the modulated beam intensity leads to diffractive 2D patterns that are formed by rectangular regions of untransformed material surrounded by transformed regions covered by NPs. The former have sharp edges that are consistent with the absence of significant mass transport that is discussed in terms of the thermal gradient induced. The latter contain NPs whose diameter increases as the initial film effective thickness increases. The surface plasmons associated with the NPs in the transformed regions dominate the reflectivity spectrum and the 2D array formed by the untransformed regions is responsible for the diffractive properties. Evidence for spinodal dewetting is only observed in our case for the steep gradient conditions achieved at the border of the homogeneously irradiated regions.

SELECTION OF CITATIONS
SEARCH DETAIL
...