Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Dis Obstet Gynecol ; 2020: 7201840, 2020.
Article in English | MEDLINE | ID: mdl-32410819

ABSTRACT

Purpose: A novel fixed-dose combination of 150 mg of econazole with 6 mg of benzydamine formulated in vaginal ovules was investigated in a randomised, double-blind, four-parallel group, tolerability, and pharmacokinetic Phase I study in healthy women. Methods: The fixed-dose combination was compared to econazole and benzydamine single-drug formulations and with placebo after daily applications for 3 consecutive days. Safety and tolerability were evaluated recording the adverse drug reactions, local and general tolerability scores, clinical laboratory assays, and vital signs. Econazole, benzydamine, and its metabolite benzydamine N-oxide pharmacokinetics were investigated after single and multiple applications. Results: Local reactions were generally absent. Pruritus and pain at the application site were infrequently reported. According to the subjects' evaluations, the overall tolerability of the ovules was rated as excellent or good. No significant effect of any treatment on laboratory parameters, vital signs, body weight, vaginal pH, or ECG was observed. Very low econazole, benzydamine, and benzydamine-N-oxide concentrations were measured in plasma, though quantifiable in almost all samples. Conclusion: The tested fixed-dose combination showed a good safety profile consistently with the known tolerability of both active substances. In addition, the confirmed low bioavailability of the drugs excludes the possibility of any accumulation effects and limits the risk of undesired systemic effects. This trial is registered at ClinicalTrials.gov with the identifier NCT02720783 last updated on 07 February 2017.


Subject(s)
Antifungal Agents/pharmacokinetics , Benzydamine/pharmacokinetics , Drug Delivery Systems/instrumentation , Econazole/pharmacokinetics , Vagina/drug effects , Administration, Oral , Adult , Antifungal Agents/administration & dosage , Area Under Curve , Benzydamine/administration & dosage , Benzydamine/analogs & derivatives , Double-Blind Method , Drug Administration Schedule , Drug Combinations , Econazole/administration & dosage , Female , Healthy Volunteers , Humans , Middle Aged , Young Adult
2.
Radiat Prot Dosimetry ; 166(1-4): 374-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25969527

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumour, with very poor prognosis. The high recurrence rate and failure of conventional treatments are expected to be related to the presence of radio-resistant cancer stem cells (CSCs) inside the tumour mass. CSCs can both self-renew and differentiate into the heterogeneous lineages of cancer cells. Recent evidence showed a higher effectiveness of C-ions and protons in inactivating CSCs, suggesting a potential advantage of Hadrontherapy compared with conventional radiotherapy for GBM treatment. To investigate the mechanisms involved in the molecular and cellular responses of CSCs to ionising radiations, two GBM stem cell (GSC) lines, named lines 1 and 83, which were derived from patients with different clinical outcomes and having different metabolic profiles (as shown by NMR spectroscopy), were irradiated with (137)Cs photons and with protons or C-ions of 62 MeV u(-1) in the dose range of 5-40 Gy. The biological effects investigated were: cell death, cell cycle progression, and DNA damage induction and repair. Preliminary results show a different response to ionising radiation between the two GSC lines for the different end points investigated. Further experiments are in progress to consolidate the data and to get more insights on the influence of radiation quality.


Subject(s)
Brain Neoplasms/radiotherapy , Carbon/therapeutic use , Cesium Radioisotopes/therapeutic use , Glioblastoma/radiotherapy , Neoplastic Stem Cells/radiation effects , Proton Therapy , Radiation, Ionizing , Apoptosis/radiation effects , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Cell Cycle/radiation effects , DNA Damage/radiation effects , Glioblastoma/metabolism , Glioblastoma/mortality , Glioblastoma/pathology , Histones/metabolism , Humans , Magnetic Resonance Spectroscopy , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Prognosis , Radiobiology , Survival Rate , Tumor Cells, Cultured
3.
Cell Death Dis ; 5: e1223, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24810059

ABSTRACT

Glioblastoma (GBM) is the most common and deadly adult brain tumor. Despite aggressive surgery, radiation, and chemotherapy, the life expectancy of patients diagnosed with GBM is ∼14 months. The extremely aggressive nature of GBM results from glioblastoma stem-like cells (GSCs) that sustain GBM growth, survive intensive chemotherapy, and give rise to tumor recurrence. There is accumulating evidence revealing that GSC resilience is because of concomitant activation of multiple survival pathways. In order to decode the signal transduction networks responsible for the malignant properties of GSCs, we analyzed a collection of GSC lines using a dual, but complementary, experimental approach, that is, reverse-phase protein microarrays (RPPMs) and kinase inhibitor library screening. We treated GSCs in vitro with clinically relevant concentrations of temozolomide (TMZ) and performed RPPM to detect changes in phosphorylation patterns that could be associated with resistance. In addition, we screened GSCs in vitro with a library of protein and lipid kinase inhibitors to identify specific targets involved in GSC survival and proliferation. We show that GSCs are relatively insensitive to TMZ treatment in terms of pathway activation and, although displaying heterogeneous individual phospho-proteomic profiles, most GSCs are resistant to specific inhibition of the major signaling pathways involved in cell survival and proliferation. However, simultaneous multipathway inhibition by the staurosporin derivative UCN-01 results in remarkable inhibition of GSC growth in vitro. The activity of UCN-01 on GSCs was confirmed in two in vivo models of GBM growth. Finally, we used RPPM to study the molecular and functional effects of UCN-01 and demonstrated that the sensitivity to UCN-01 correlates with activation of survival signals mediated by PDK1 and the DNA damage response initiated by CHK1. Taken together, our results suggest that a combined inhibition of PDK1 and CHK1 represents a potentially effective therapeutic approach to reduce the growth of human GBM.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Neoplastic Stem Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Brain Neoplasms/enzymology , Brain Neoplasms/pathology , Cell Death/drug effects , Cell Line, Tumor , Checkpoint Kinase 1 , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , Glioblastoma/enzymology , Glioblastoma/pathology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Targeted Therapy , Neoplastic Stem Cells/enzymology , Neoplastic Stem Cells/pathology , Protein Array Analysis , Protein Serine-Threonine Kinases/metabolism , Proteomics/methods , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Signal Transduction/drug effects , Small Molecule Libraries , Staurosporine/analogs & derivatives , Staurosporine/pharmacology , Temozolomide , Time Factors , Tumor Burden/drug effects , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...