Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857534

ABSTRACT

Postmodification of alginate-based microspheres with polyelectrolytes (PEs) is commonly used in the cell encapsulation field to control microsphere stability and permeability. However, little is known about how different applied PEs shape the microsphere morphology and properties, particularly in vivo. Here, we addressed this question using model multicomponent alginate-based microcapsules postmodified with PEs of different charge and structure. We found that the postmodification can enhance or impair the mechanical resistance and biocompatibility of microcapsules implanted into a mouse model, with polycations surprisingly providing the best results. Confocal Raman microscopy and confocal laser scanning microscopy (CLSM) analyses revealed stable interpolyelectrolyte complex layers within the parent microcapsule, hindering the access of higher molar weight PEs into the microcapsule core. All microcapsules showed negative surface zeta potential, indicating that the postmodification PEs get hidden within the microcapsule membrane, which agrees with CLSM data. Human whole blood assay revealed complex behavior of microcapsules regarding their inflammatory and coagulation potential. Importantly, most of the postmodification PEs, including polycations, were found to be benign toward the encapsulated model cells.

2.
Small ; 20(23): e2307464, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38212275

ABSTRACT

The transplantation of immunoisolated stem cell derived beta cell clusters (SC-ß) has the potential to restore physiological glycemic control in patients with type I diabetes. This strategy is attractive as it uses a renewable ß-cell source without the need for systemic immune suppression. SC-ß cells have been shown to reverse diabetes in immune compromised mice when transplanted as ≈300 µm diameter clusters into sites where they can become revascularized. However, immunoisolated SC-ß clusters are not directly revascularized and rely on slower diffusion of nutrients through a membrane. It is hypothesized that smaller SC-ß cell clusters (≈150 µm diameter), more similar to islets, will perform better within immunoisolation devices due to enhanced mass transport. To test this, SC-ß cells are resized into small clusters, encapsulated in alginate spheres, and coated with a biocompatible A10 polycation coating that resists fibrosis. After transplantation into diabetic immune competent C57BL/6 mice, the "resized" SC-ß cells plus the A10 biocompatible polycation coating induced long-term euglycemia in the mice (6 months). After retrieval, the resized A10 SC-ß cells exhibited the least amount of fibrosis and enhanced markers of ß-cell maturation. The utilization of small SC-ß cell clusters within immunoprotection devices may improve clinical translation in the future.


Subject(s)
Insulin-Secreting Cells , Animals , Humans , Insulin-Secreting Cells/metabolism , Mice , Mice, Inbred C57BL , Diabetes Mellitus, Experimental , Stem Cells/cytology , Stem Cells/metabolism , Diabetes Mellitus, Type 1/therapy
3.
Biotechnol Prog ; 35(6): e2851, 2019 11.
Article in English | MEDLINE | ID: mdl-31131558

ABSTRACT

In this study, we developed a high-throughput microchannel emulsification process to encapsulate pancreatic beta cells in monodisperse alginate beads. The process builds on a stirred emulsification and internal gelation method previously adapted to pancreatic cell encapsulation. Alginate bead production was achieved by flowing a 0.5-2.5% alginate solution with cells and CaCO3 across a 1-mm thick polytetrafluoroethylene plate with 700 × 200 µm rectangular straight-through channels. Alginate beads ranging from 1.5-3 mm in diameter were obtained at production rates exceeding 140 mL/hr per microchannel. Compared to the stirred emulsification process, the microchannel emulsification beads had a narrower size distribution and demonstrated enhanced compressive burst strength. Both microchannel and stirred emulsification beads exhibited homogeneous profiles of 0.7% alginate concentration using an initial alginate solution concentration of 1.5%. Encapsulated beta cell viability of 89 ± 2% based on live/dead staining was achieved by minimizing the bead residence time in the acidified organic phase fluid. Microchannel emulsification is a promising method for clinical-scale pancreatic beta cell encapsulation as well as other applications in the pharmaceutical, food, and cosmetic industries.


Subject(s)
Cell Encapsulation/methods , Emulsions/chemistry , Insulin-Secreting Cells/cytology , Alginates , Animals , Cell Survival , Cells, Cultured , Insulin-Secreting Cells/physiology , Mice , Viscosity
4.
Sci Rep ; 8(1): 1637, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29374272

ABSTRACT

A next-generation cure for type 1 diabetes relies on immunoprotection of insulin-producing cells, which can be achieved by their encapsulation in microspheres made of non-covalently crosslinked hydrogels. Treatment success is directly related to the microsphere structure that is characterized by the localization of the polymers constituting the hydrogel material. However, due to the lack of a suitable analytical method, it is presently unknown how the microsphere structure changes in vivo, which complicates evaluation of different encapsulation approaches. Here, confocal Raman microscopy (CRM) imaging was tailored to serve as a powerful new tool for tracking structural changes in two major encapsulation designs, alginate-based microbeads and multi-component microcapsules. CRM analyses before implantation and after explantation from a mouse model revealed complete loss of the original heterogeneous structure in the alginate microbeads, making the intentionally high initial heterogeneity a questionable design choice. On the other hand, the structural heterogeneity was conserved in the microcapsules, which indicates that this design will better retain its immunoprotective properties in vivo. In another application, CRM was used for quantitative mapping of the alginate concentration throughout the microbead volume. Such data provide invaluable information about the microenvironment cells would encounter upon their encapsulation in alginate microbeads.

SELECTION OF CITATIONS
SEARCH DETAIL
...