Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Graph Model ; 85: 1-12, 2018 10.
Article in English | MEDLINE | ID: mdl-30053756

ABSTRACT

The population density concept has emerged as a proposal for the analysis of molecular dynamics results, the key characteristic of population density is the evaluation of the simultaneous occurrence of a set of relevant parameters for a system. However, despite its statistical strength, selection of the tolerance level for the comparison of different models may appear as arbitrary. This work introduces the G-score, a function which summarizes and categorizes the results of population density analysis. Additionally, it incorporates parameters based on rmsd and dihedral angles, besides the protein-protein and protein-ligand interatomic distances conventionally used, which complement each other to provide a better description of the behavior of the system. These newly-proposed tools were applied to determine the most probable protonation state of the aspartic dyad of BACE1, Asp93 and Asp289, in the presence of three types of transition state inhibitors namely: reduced amides, tertiary carbinamines and hydroxyethylamines. The results show a full agreement between G-score values and population density charts, with the advantage of allowing a quick and direct comparison among all the considered models. We anticipate that the simplicity of calculating the parameters employed in this study will permit the extensive use of population density and the G-score for other molecular systems.


Subject(s)
Amyloid Precursor Protein Secretases/chemistry , Models, Molecular , Protein Conformation , Protons , Algorithms , Binding Sites , Catalytic Domain , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding
2.
J Biomol Struct Dyn ; 36(13): 3557-3574, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29052456

ABSTRACT

BACE1 is an aspartyl protease with a very relevant role in medicinal chemistry related to Alzheimer Disease since it has demonstrated to be a promising therapeutic target for inhibition and possible control for the progress of the peptide accumulation characteristic of this pathology. The enzymatic activity of this protein is given by the aspartic dyad, Asp93 and Asp289, which can adopt several protonation states depending on the chemical nature of its inhibitors, this is, monoprotonated, diprotonated and di-deprotonated states. In the present study, the analysis of the population density, for a series of protein-inhibitor molecular dynamics simulations, was carried out to identify the most feasible protonation state adopted by the catalytic dyad in the presence of tertiary carbinamine (TC) transition state analog inhibitors. The results revealed that the monoprotonated Asp289i state, in which the Asp93 and Asp289 residue side chains are deprotonated and protonated on the inner oxygen, respectively, is the most preferred in the presence of TC family inhibitors. This result was obtained after evaluating, for all 9 possible protonation state configurations, the individual and combined population densities of a set of parameters sensitive to protonation state of the Aspartic dyad, using an X-ray experimental BACE1/TC crystallographic structure as reference. This case study demonstrates again the usefulness of the concept of population density as a quantitative tool to establish the most stable system settings, among all possible, by measuring the level of occurrence of simultaneous events obtained from a sampling over time. These results will help to clear the phenomena related to the TCs inhibitory pathway, as well as assist in the design of better TC inhibitors against Alzheimer's protease.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/chemistry , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/chemistry , Methylamines/chemistry , Alzheimer Disease/pathology , Crystallography, X-Ray , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding/physiology , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...